统计子矩阵

统计子矩阵

枚举四次,70%能过

#include<iostream>
#include<cstring>
using namespace std;

int main()
{
    int N,M,K;
    cin >> N >> M >> K;
    int s[N+5][M+5];
    memset(s,0,sizeof s);
    for(int i=1;i<=N;i++)
    {
        for(int j=1;j<=M;j++)
        {
            int x;  cin >> x;
            s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + x;
        }

    }


    int cnt = 0;
    for(int i=1;i<=N;i++)
    {
        for(int j=1;j<=M;j++)
        {
            for(int x=i;x<=N;x++)
            {
                for(int y=j;y<=M;y++)
                {
                    int value = s[x][y] -s[x][j-1]-s[i-1][y]+ s[i-1][j-1];
                    if(value<=K)
                    {
                        cnt++;
                    }

                }
            }
        }
    }

    cout << cnt << endl;

    return 0;
}

枚举三次,双指针,全部数据能过

#include<iostream>
#include<cstring>
using namespace std;

int main()
{
    int N,M,K;
    cin >> N >> M >> K;
    int s[N+5][M+5];
    memset(s,0,sizeof s);
    for(int i=1;i<=N;i++)
    {
        for(int j=1;j<=M;j++)
        {
            int x;  cin >> x;
            s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + x;
        }

    }


    long long cnt = 0;
    for(int i=1;i<=N;i++)
    {
        for(int j=i;j<=N;j++)
        {
            for(int l=1,r=1;r<=M;r++)
            {

                while(l<=r&& s[j][r] - s[j][l-1] - s[i-1][r] + s[i-1][l-1]>K)  l++;
                if(l<=r)    cnt += (r-l+1);
            }
        }
    }

    cout << cnt << endl;

    return 0;
}

分析:

前缀和+双指针

没做出来原因:

前缀和显而易见,暴力枚举很容易想到,但就是不知道怎么优化。看y总直接压缩成一维,上下固定,然后从左往右是递增的,就很显然是双指针了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值