统计子矩阵
枚举四次,70%能过
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int N,M,K;
cin >> N >> M >> K;
int s[N+5][M+5];
memset(s,0,sizeof s);
for(int i=1;i<=N;i++)
{
for(int j=1;j<=M;j++)
{
int x; cin >> x;
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + x;
}
}
int cnt = 0;
for(int i=1;i<=N;i++)
{
for(int j=1;j<=M;j++)
{
for(int x=i;x<=N;x++)
{
for(int y=j;y<=M;y++)
{
int value = s[x][y] -s[x][j-1]-s[i-1][y]+ s[i-1][j-1];
if(value<=K)
{
cnt++;
}
}
}
}
}
cout << cnt << endl;
return 0;
}
枚举三次,双指针,全部数据能过
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int N,M,K;
cin >> N >> M >> K;
int s[N+5][M+5];
memset(s,0,sizeof s);
for(int i=1;i<=N;i++)
{
for(int j=1;j<=M;j++)
{
int x; cin >> x;
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + x;
}
}
long long cnt = 0;
for(int i=1;i<=N;i++)
{
for(int j=i;j<=N;j++)
{
for(int l=1,r=1;r<=M;r++)
{
while(l<=r&& s[j][r] - s[j][l-1] - s[i-1][r] + s[i-1][l-1]>K) l++;
if(l<=r) cnt += (r-l+1);
}
}
}
cout << cnt << endl;
return 0;
}
分析:
前缀和+双指针
没做出来原因:
前缀和显而易见,暴力枚举很容易想到,但就是不知道怎么优化。看y总直接压缩成一维,上下固定,然后从左往右是递增的,就很显然是双指针了。