[BZOJ 4565][HAOI 2016] 字符合并 状压DP+区间DP

题目传送门:【BZOJ 4565】


题目大意:有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数。得到的新字符以及得到的分数由这 k 个字符确定。你需要求出你能获得的最大分数。

输入第一行为两个整数 n,k。接下来一行为长度为 n 的 01 串,表示初始串。接下来 2k 行,每行一个字符 c i 和一个整数 w i ,c i 表示长度为 k 的 01 串连成二进制后按从小到大顺序得到的第 i 种合并方案得到的新字符,w i 表示对应的第 i 种方案获得的分数。(1 ≤ n ≤ 300,0 ≤ c i ≤ 1,w i ≥ 1,k ≤ 8)
输出一个数字表示答案。


题目分析:
(虽然本人做出来了,但是我讲不来状态表示法,因此这里大家可以参考某 dalao 的题解)

Orz(http://blog.csdn.net/clove_unique/article/details/52261939)

好的。回到这里。

首先我们看到这类问题,肯定不能去暴力地改变每个位置的值;既然不能暴力改位置了,那么接下来基本上是 DP 的内容了。果然,这道题就是一个状压 DP 的基本运用,嵌入了区间 DP 的思想。

分析题目,观察到每个位置都可以被其对应的另一段区间转移到。所以我们直接用 dp i,j,k 表示将 i~j 这一段消除到 k 状态时,得到的最大分数。

(哎呀实在是没法口胡了,还是代码写得清真)

另外,这道题看起来是 O(n 3 * 2 k ),好像过不了;但是考虑到每一段能够转移的状态有限,实际复杂度大约只有 O(n 2 * 2 k )。

下面附上代码:

  1. #include<cstdio>  
  2. #include<cstring>  
  3. #include<algorithm>  
  4. using namespace std;  
  5. typedef long long LL;  
  6. const int MX=305;  
  7.   
  8. int n,m,k,line[MX];  
  9. LL ans=0,dp[MX][MX][260],to[MX],mth[MX];  
  10.   
  11. void solve(){  
  12.     for (int i=1;i<=n;i++){                  //初始化长度为 1 的 dp 值为 0   
  13.         dp[i][i][line[i]]=0;  
  14.     }  
  15.     for (int len=2;len<=n;len++){  
  16.         for (int i=1;i<=n-len+1;i++){  
  17.             int j=len+i-1,tmp=j-i;  
  18.             while (tmp>=k) tmp-=k-1;         //避免减过   
  19.             for (int p=j;p>i;p-=k-1){  
  20.                 int totl=1<<tmp;  
  21.                 for (int q=0;q<totl;q++){  
  22.                     if (~dp[i][p-1][q]){  
  23.                         if (~dp[p][j][0])  
  24.                             dp[i][j][q<<1]=max(dp[i][j][q<<1],dp[i][p-1][q]+dp[p][j][0]);  
  25.                         if (~dp[p][j][1])  
  26.                             dp[i][j][q<<1|1]=max(dp[i][j][q<<1|1],dp[i][p-1][q]+dp[p][j][1]);  
  27.                     }  
  28.                 }  
  29.             }  
  30.             if (tmp==k-1){  
  31.                 LL moveto[2]={-1,-1};           //为了和其他数组匹配,同时开long long   
  32.                 for (int q=0;q<m;q++){  
  33.                     if (~dp[i][j][q]){  
  34.                         moveto[to[q]]=max(moveto[to[q]],dp[i][j][q]+mth[q]);  
  35.                     }  
  36.                 }  
  37.                 dp[i][j][0]=moveto[0];  
  38.                 dp[i][j][1]=moveto[1];  
  39.             }  
  40.         }  
  41.     }  
  42. }  
  43.   
  44. int main(){  
  45.     memset(dp,0xff,sizeof(dp));             //初始化值为-1   
  46.     scanf(”%d%d”,&n,&k);  
  47.     m=1<<k;  
  48.     for (int i=1;i<=n;i++){  
  49.         scanf(”%1d”,&line[i]);  
  50.     }  
  51.     for (int i=0;i<m;i++){  
  52.         scanf(”%d%lld”,&to[i],&mth[i]);  
  53.     }  
  54.     solve();  
  55.     for (int i=0;i<m;i++){  
  56.         ans=max(ans,dp[1][n][i]);  
  57.     }  
  58.     printf(”%lld”,ans);  
  59.     return 0;  
  60. }  
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值