模型保存与加载

pytorch中模型的保存与加载

前言

先上代码

from transformers import Trainer,BertConfig,BertForSequenceClassification
import torch

......

# 创建Trainer
trainer = Trainer(
    model=model.to('cuda'),             
    args=training_args,                 
    train_dataset=train_dataset,        
    eval_dataset=test_dataset,          
)
# 开始训练
trainer.train()
# 开始评估模型
trainer.evaluate()
# 保存模型 会保存到配置的output_dir处
trainer.save_model()
torch.save(model.state_dict(), 'model_save.bin')

# 使用训练好的模型
output_config_file = './my_results/config.json'
output_model_file = 'model_save.bin'

config = BertConfig.from_json_file(output_config_file)
model = BertForSequenceClassification(config)
state_dict = torch.load(output_model_file)
model.load_state_dict(state_dict)

cache_dir="bert-base-uncased/"
tokenizer = BertTokenizer.from_pretrained(cache_dir)
data = tokenizer(['This is a good movie', 'This is a bad movie'], max_length=512, truncation=True, padding='max_length', return_tensors="pt")
print(model(**data))

Pytorch是深度学习领域中非常流行的框架之一,支持的模型保存格式包括.pt和.pth .bin .onnx。这几种格式的文件都可以保存Pytorch训练出的模型,但是它们的区别是什么呢?

模型的保存与加载到底在做什么?

保存训练好的模型参数,便于之后进行复现或继续训练

  • model.state_dict(),模型每一层可学习的节点的参数,比如weight/bias;
  • optimizer.state_dict(),模型的优化器中的参数;

.pt .pth .bin 以及 .onnx 是保存时约定的格式,对于torch.load()方法而言,不管你把后缀改成是什么,只要文件是对的都可以读取。
格式汇总:
在这里插入图片描述
来源:链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值