- 博客(79)
- 资源 (4)
- 收藏
- 关注
原创 人工智能-软件安装必备链接,资源丰富,不断更新
Anaconda2021安装Anaconda安装使用指南-2020.11版_Fanfan的博客-CSDN博客Pycharm2021安装pycharm安装2021最新详细教程小白入门_xl_594138的博客-CSDN博客_pycharm安装教程2021SSH-key 在Windows下如何生成公钥和私钥SSH-key 在Windows下如何生成公钥和私钥_monotonewang的博客-CSDN博客_windows生成ssh公钥【Python】MySQL数据库(安装MySQL、创建.
2021-12-09 09:50:22 167
转载 人工智能顶级实战工程师就业课程
人工智能顶级实战工程师就业课程_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1wA411e7s8?p=1
2021-11-06 20:41:27 169
转载 基于 Python 的 OpenVINO 开发实战教程
基于 Python 的 OpenVINO 开发实战教程_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Xq4y177Sw?from=search&seid=2903546899061717277&spm_id_from=333.337.0.0
2021-11-06 20:37:36 325
转载 详解TensorRT的C++/Python高性能部署,实战应用到项目
详解TensorRT的C++/Python高性能部署,实战应用到项目_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Xw411f7FW?p=2
2021-11-06 20:23:40 957
转载 从零写Python练手项目:实用脚本
从零写Python练手项目:实用脚本_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1dV41127Sk?p=19
2021-11-06 20:20:06 138
转载 常见边缘检测对比(Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子)
(4条消息) 常见边缘检测对比(Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子)_荣仔的博客-CSDN博客https://blog.csdn.net/IT_charge/article/details/120322875?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163578194216780255238872%2522%252C%2522scm%2522%253A%252220140713
2021-11-01 23:58:14 564
转载 Batch Normalization(BN)超详细解析
(4条消息) Batch Normalization(BN)超详细解析_越前浩波的博客-CSDN博客https://blog.csdn.net/weixin_44023658/article/details/105844861?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163569418916780261923067%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257
2021-10-31 23:46:16 134
转载 深度学习图像数据增广方法总结
深度学习图像数据增广方法总结 - 灰信网(软件开发博客聚合) (freesion.com)https://www.freesion.com/article/337654380/#1_Data_Augmentation_7
2021-10-24 18:17:05 309
转载 Pytorch常用API汇总(持续更新)
(1条消息) Pytorch常用API汇总(持续更新)_Elijah_0的博客-CSDN博客_pytorch的apihttps://blog.csdn.net/qq_49134563/article/details/108200828?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163505057316780269869595%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522
2021-10-24 12:45:30 220
转载 人工智能--CV视觉方向详细知识体系总结(2021新)
人工智能--CV视觉方向详细知识体系总结(2021新)_柏拉图工作室-AI学科-CSDN博客_cv人工智能本文专注整理一些有关计算机视觉的知识体系,这不是最终版,会不定期的更新。整理的CV知识体系主要包括基础知识,工具,图像分类,目标检测,图像分割,目标跟踪,人脸识别,推荐书籍以及一些常见面试题目,包含了作为一个CV工程师在开发工作学习中需要用到或者可能用到的绝大部分知识。千里之行始于足下,希望大家根据自己的薄弱点,查缺补漏,根据自己感兴趣的方面多学习,学的精通一点,从现在开始行动起来。路漫漫其修远兮,吾将
2021-10-23 17:38:33 802
转载 pytorch教程
pytorch教程--API接口学习_人生百态361-CSDN博客_pytorch的apihttps://blog.csdn.net/hejp_123/article/details/107208505?ops_request_misc=&request_id=&biz_id=102&utm_term=pytorch%E5%B8%B8%E7%94%A8API&utm_medium=distribute.pc_search_result.none-task-blog-2~all
2021-10-23 10:15:49 79
转载 python中的matplotlib用法
Python之MatPlotLib使用教程_zhw864680355的博客-CSDN博客_matplotlib使用教程https://blog.csdn.net/zhw864680355/article/details/102500263?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163495501816780271532619%2522%252C%2522scm%2522%253A%252220140713.130102334..%25
2021-10-23 10:12:43 99
转载 Python基础——Pandas库超详细介绍+实例分析+附代码
Python基础——Pandas库超详细介绍+实例分析+附代码_@Irene的博客-CSDN博客_pandas库https://blog.csdn.net/qq_42871249/article/details/104689816?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163495485516780261929712%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%2
2021-10-23 10:09:06 534
转载 最好的NumPy图解教程
TensorFlow1.x版本,静态图机制在部署中很实用。Tensorflow2.x每次运行前都要重复的建立动态图,无法重载,也不利优化,因此,执行效率不高。为了兼顾易用性和执行效率,2.0版本仍然保留了静态图机制。因此->...
2021-10-23 10:06:08 111
转载 TensorFlow2.0笔记
〖TensorFlow2.0笔记23〗TensorFlow2.0学习笔记总结!_布衣小张-CSDN博客https://blog.csdn.net/abc13526222160/article/details/101938410?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163495274516780264092355%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall
2021-10-23 09:37:37 92
原创 GoogLeNet 四代(Inception v1、v2、v3、v4)
目录一、Inception V1二、Inception V2提升网络性能最直接的办法就是增加网络深度和宽度,深度指网络层次数量、宽度指神经元数量。但这种方式存在以下问题:(1)参数太多,如果训练数据集有限,很容易产生过拟合;(2)网络越大、参数越多,计算复杂度越大,难以应用;(3)网络越深,容易出现梯度弥散问题(梯度越往后穿越容易消失),难以优化模型。一、Inception V1最原始Inception的基本结构:然而这个Inception原始版本,所有的卷积核都在上一.
2021-10-23 09:09:54 1774
原创 Linux指令
内核是一个操作系统最核心的内容。#,$为命令提示符,超级管理员的提示符:#普通用户的提示符:$依次为当前用户账号,@后为当前主机名,默认是localhost,命令历史功能:和history 命令息息相关,history命令可以实现查看命令的历史以及调用历史命令的功能。格式为history+选项+历史命令保存文件!+序号 可执行第序号的命令...
2021-10-23 00:59:58 67
原创 深度学习模型设计和优化
目录数据的收集和预处理数据的采集和标注(选择单种或多种数据完成任务,是否需要进行预处理)数据的尺寸和我们要完成的任务有关系模型选择什么样的模型最适合完成任务对多个模型的性能进行预判模型的训练和优化参数调优结构调优模型部署模型性能的提升通过加深网络结构leNet(7层)->AlexNet(8层)->B=VGG(16或19层)->mobileNet(28层)模型的宽度和性能模型的特征重用,模型的效率残差网络的改进(多分支d...
2021-10-22 23:43:23 559
转载 深度学习模型大小与模型推理速度的探讨
深度学习模型大小与模型推理速度的探讨_Tom Hardy的博客-CSDN博客作者丨田子宸@知乎(已授权)来源丨https://zhuanlan.zhihu.com/p/411522457编辑丨极市平台导读本文对衡量深度学习模型大小的一些常用指标,如计算量、参数量...https://blog.csdn.net/qq_29462849/article/details/120520918...
2021-10-22 14:39:55 151
转载 深度学习模型参数量/计算量和推理速度计算
微信正文链接:https://mp.weixin.qq.com/s/nknW1.FLOPs和Params计算1.1概念理解FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。计算公式:对卷积层:(K_h * K_w * C_in * C_out) * (H_out * W_out)对全连接层:C_in * C_outFLOPs:注意s小写,是floating poi
2021-10-22 14:37:44 837
原创 YOLO v3网络结构分析
1.Darknet-53 模型结构在论文中虽然有给网络的图,但我还是简单说一下。这个网络主要是由一系列的1x1和3x3的卷积层组成(每个卷积层后都会跟一个BN层和一个LeakyReLU)层,作者说因为网络中有53个convolutional layers,所以叫做Darknet-53(2 + 1*2 + 1 + 2*2 + 1 + 8*2 + 1 + 8*2 + 1 + 4*2 + 1 = 53 按照顺序数,最后的Connected是全连接层也算卷积层,一共53个)。下图就是Darknet-53的结构图,
2021-10-22 01:03:28 3050
转载 『图解』深度可分离卷积
深度可分离卷积其实是一种可分解卷积操作(factorized convolutions)。其可以分解为两个更小的操作:depthwise convolution 和 pointwise convolution。深度卷积与标准卷积网络不一样的是,这里会将卷积核拆分成单通道形式,在不改变输入特征图像的深度的情况下,对每一通道进行卷积操作,这样就得到了和输入特征图通道数一致的输出特征图。如上图,输入12123 的特征图,经过5513的深度卷积之后,得到了88*3的输出特征图。输入和输出的维度是不变
2021-10-22 00:07:23 4861
原创 残差网络为什么能做到很深层?
神经网络在反向传播过程中要不断地传播梯度,而当网络层数加深时,梯度在逐层传播过程中会逐渐衰减,导致无法对前面网络层的权重进行有效的调整。残差网络中,加入了short connections 为梯度带来了一个直接向前面层的传播通道,缓解了梯度的减小问题。从前后向信息传播的角度来看何恺明等人从前后向信息传播的角度给出了残差网路的一种解释:在前向传播时,输入信号可以从任意低层直接传播到高层。由于包含了一个天然的恒等映射,一定程度上可以解决网络退化问题。反向传播时,错误信号可以不经过任何中间权重矩阵变换直接传播到.
2021-10-21 23:55:16 991
转载 总结 | 一文读懂 R-CNN,Fast R-CNN,Faster R-CNN 发展史
总结 | 一文读懂 R-CNN,Fast R-CNN,Faster R-CNN 发展史 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/138577896
2021-10-21 23:34:17 139
原创 什么是NMS(Non-maximum suppression 非极大值抑制)
就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制的方法是:先假设有6个矩形框,根据分类器的类别分类概率做排序,假设从小到大属于车辆的概率 分别为A、B、C、D、E、F。(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值; (2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。 (3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的...
2021-10-21 23:24:20 203
转载 K-means选择初始点的方法有哪些,优缺点是什么?(列出两种以上)
KMeans是数据挖掘十大算法之一,在数据挖掘实践中,我们也常常将KMeans运用于各种场景,因为它原理简单、易于实现、适合多种数据挖掘情景。如上图所示,数据样本用圆点表示,每个簇的中心点用叉叉表示:(a)刚开始时是原始数据,杂乱无章,没有label,看起来都一样,都是绿色的。(b)假设数据集可以分为两类,令K=2,随机在坐标上选两个点,作为两个类的中心点。(c-f)演示了聚类的两种迭代。先划分,把每个数据样本划分到最近的中心点那一簇;划分完后,更新每个簇的中心,即把该簇的...
2021-10-21 09:49:55 2373
原创 请简单解释下目标检测中的这个IOU评价函数
IoU值属于[0,1] 越接近于1表明预测值越接近于真实值,预测效果越好;在目标检测任务中,我们时常会让模型一次性生成大量的候选框(candidate bbox),然后再根据每一个框的置信度对框进行排序,进而依次计算框与框之间的IoU,然后进行NMS非极大值抑制删除多余的检测框。例如在做人脸检测时,模型的预测结果可能是左图,经过NMS后最终得到的是右图。通过IoU来评判两个图像的重合度具有以下几点优点: 1. 具有尺度不变性;2. 满足非负性;3. 满足对称性;但与此同时,I...
2021-10-21 09:45:04 1129
转载 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
候选区域/框 + 深度学习分类:通过提取候选区域,并对相应区域进行以深度学习方法为主的分类的方案,如:R-CNN(Selective Search + CNN + SVM)SPP-net(ROI Pooling)Fast R-CNN(Selective Search + CNN + ROI)Faster R-CNN(RPN + CNN + ROI)...
2021-10-21 09:21:26 269
原创 GAN 生成对抗网络
包含三个部分:生成,判别,对抗生成和判别是两个独立的模块生成器负责依据随机向量产生内容这些内容可以是图片,文字,也可以是音乐,取决于你想要生成什么判别器负责判断接收到的内容是否是真实的通常会给出一个概率代表着内容的真实程度两者使用何种网络并没有规定擅长处理图像的CNN,常见的全连接,只要能完成相应的功能就可以接下来是对抗这指的是GAN的交替训练过程以图像生成为例先让生成器产生一些假的图片和收集到的真图像一起交给判别器让它学习区分两者给真实的高分给假
2021-10-20 21:20:04 803
转载 详述目标检测最常用的三个模型:Faster R-CNN、SSD和YOLO
详述目标检测最常用的三个模型:Faster R-CNN、SSD和YOLO_三颗心123的博客-CSDN博客_目标检测模型
2021-10-18 23:18:01 1357
转载 如何设计一个神经网络模型达到某种效果?
如何设计一个神经网络模型达到某种效果? - 知乎上海交大MVIG实验室本科招新(深度学习,计算机视觉),面向发表CVPR/ICCV/NIPS今天看到这个新闻,里面有…https://www.zhihu.com/question/53787208
2021-10-18 11:20:37 215
转载 YOLO-从零开始入门目标检测
YOLO-从零开始入门目标检测 - 知乎 (zhihu.com)https://www.zhihu.com/column/c_1364967262269693952
2021-10-18 00:43:55 655
人工智能-安装软件必备链接.docx
2021-12-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人