矩形填补 (Filling.pas/c/cpp/in/out) (Scores:5*20)
【题目描述】
给定平面 n 个黑点,如果平面一个边平行于坐标轴的矩形 3 个角是黑色的那么就把那
个矩形的第 4 个角改成黑色,最后平面上将会有多少个黑点
【输入格式】
第一行一个整数 n (30%的数据 n<=100,100%的数据 n<=200000),表示最初有 n
个点
接下来 n 行,每行两个整数 xi,yi (绝对值<=10^9),表示第 i 个点的坐标
【输出格式】
一个整数,表示最后有多少个点
相当经典的并查集题。
模型转换:
考虑任意一个新增的点,由题,其横坐标、纵坐标一定都是已经存在的X坐标,Y坐标。
但是不是所有满足上面的条件的都可以。
我们将x坐标相同的点合并为集合,
再把y坐标相同的点所在的集合合并,
那么这个集合中原有点的个数+新点的个数就是该集合中(x坐标的种类)*(y坐标的种类)
那么怎么维护这些种类呢?
我们先考虑只维护x的。
显而易见排序+并查集。
怎么同时维护y的呢?
再次排序,按y相同合并原集合。
然后,由于y相同的都合并了,所以相同的y必然只存在于一个集合中。
那么,在所有y相同的点中,任取一个,将其所在集合的代表元的y种类计数变量 + 1 即可。
Source:
#include<cstdio>
#include<algorithm>
#include<climits>
#ifdef WIN32
#define ot "%I64d"
#else
#define ot "%lld"
#endif
#define maxn 2000005
using namespace std;
int n, f[maxn], cx[maxn], cy[maxn];
struct point
{
int x, y, n;
}a[maxn];
void init()
{
freopen("filling.in", "r", stdin);
freopen("filling.out", "w", stdout);
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d%d", &a[i].x, &a[i].y), a[i].n = i;
}
bool cmp(point a, point b)
{
return a.x < b.x;
}
bool cmp2(point a, point b)
{
return a.y < b.y;
}
int find(int k)
{
if (f[k] != k) f[k] = find(f[k]);
return f[k];
}
int main()
{
init();
sort(a + 1, a + n + 1, cmp);
f[a[1].n] = a[1].n; cx[a[1].n] = 1;
for (int i = 2; i <= n; i++)
if (a[i].x == a[i - 1].x)
f[a[i].n] = f[a[i - 1].n];
else
f[a[i].n] = a[i].n, cx[a[i].n] = 1;
sort(a + 1, a + n + 1, cmp2);
for (int i = 2; i <= n; i++)
if (a[i].y == a[i - 1].y)
{
int f1 = find(a[i - 1].n), f2 = find(a[i].n);
if (f1 != f2)
{
f[f1] = f2; cx[f2] += cx[f1];
}
}
++cy[find(a[1].n)];
long long ans = 0;
for (int i = 2; i <= n; i++)
if (a[i].y != a[i - 1].y) ++cy[find(a[i].n)];
for (int i = 1; i <= n; i++)
if (f[i] == i) ans += (long long)cx[i] * cy[i];
printf(ot, ans);
return 0;
}