玩转两字符串之间关系的问题

经常有题目或者题目的一个部分涉及到两字符串S和T之间的关系判断操作。

常见的有三种:

①求S是否包含T

例如S=“ababcd”,T=“abc”,很明显包含。

②求T是否是S的子序列

例如S=“ababcd”,T=“acd”,很明显是。

③求S是否能涵盖T中所有字符

例如S=“ababcd”,T=“cda”,很明显包含。

我们首先捋一捋①②③的关系。

若符合①必符合②和③;若符合②,不一定符合①,但必符合③;若符合③,则不一定符合①和②。它们的关系用图表示如下:

我们依次分析各种情况的求解方式:

对于①

该题有两种方法,一种是暴力法,还有一种是大名鼎鼎的KMP算法(这里就不细讲KMP,因为网上也有很多并且这算法不是很好理解,不是一时半会能讲懂的,有时间后面会专门写个博客讲述KMP)

首先暴力法,代码及注释如下:

#include<cstdio> 
#include <string>
using namespace std;

bool bruteForce(string s,string t){
	//使用双指针法 
	int l=0,r=0;
	while(l<s.size()&&r<t.size()) {
		//该字符匹配成功,指针l和r均右移 
		if(s[l]==t[r]){
			++l;
			++r;
		} else{
			//未匹配成功,指针l移到该次l匹配过程的起点的下一个,r归0。
			/*
			为什么l=l-r+1表示次匹配过程的起点的下一个点呢?
			该次匹配开始之前r=0,到该次匹配错误,说明了l也走了r步。那么起点就是l-r。
			起点的下一位就是l-r+1 
			*/ 
			l=l-r+1;
			r=0; 
		}
	}	
	//若最后r等于t的长度,说明t被完全匹配,则为true 
	return r==t.size()?true:false;
	 
}

int main(){
	string S="abababcd";
	string T="abc";
	printf("%d",bruteForce(S,T)); 
}

主串S长度为m,模式串T长度为n,暴力法的时间复杂度为O(m*n)。

KMP算法,代码及注释如下:

#include<cstdio> 
#include <string>
using namespace std;

//next[i]数组的意思该字符前i+1项的相同的最长前缀和最长后缀的长度-1,也可以理解为该最长前缀的结尾的索引。-1代表不存在。 
void getNext(int next[],string t){
	next[0]=-1;// 一个字符一定不存在相同前后缀。
	//使用双指针l和r 
	int r=-1;
	for(int l=1;l<t.size();l++){
		while(r>-1&&t[r+1]!=t[l]){//下一个元素不相等,r需要向前回溯,左移到其前面字符的最长相同的前缀的结尾处(-1表示不存在) 
			r=next[r]; 
		}
		if(t[r+1]==t[l]){
			++r;//下一个元素相等,则指针r右移,代表相同前后缀长度+1 
		}
		next[l]=r; 
	} 
} 

bool KMP(string s,string t){
	int next[t.size()];
	getNext(next,t);
	//使用双指针l和r 
	int r=-1;
	for(int l=0;l<s.size();l++){
		while(r>-1&&t[r+1]!=s[l]){//两串下一个元素不相等,r需要向前回溯 
			r=next[r]; //这里r是回溯到-1或者最长前缀的结尾位置,那么k+1就代表结尾下一个字符。而暴力法是归0,所以效率高于暴力法。 
		}
		if(t[r+1]==s[l]){
			++r;//两串下一个元素相等,则指针r右移,匹配成功的长度+1。 
		}
		//匹配成功 
		if(r==t.size()-1) return true;
	} 
	return false;
} 

int main(){
	string S="abababcd";
	string T="abc";
	printf("%d",KMP(S,T)); 
}

计算next数组需要将T串的每一个元素都求值,即时间复杂度为O(n)。匹配时S中每一个元素匹配时只需要调用T相对应元素的next值来进行匹配,所以时间复杂度为O(m)。

算法总复杂度为O(m+n)。

对于②

直接上代码,代码上有注释。

#include<cstdio> 
#include <string>
using namespace std;

bool isSubsequence(string s,string t){
	//使用双指针法 
	int l=0,r=0;
	while(l<s.size()&&r<t.size()) {
		//该字符匹配成功,指针l和r均右移 
		if(s[l]==t[r]){
			++l;
			++r;
		} else{
			//未匹配成功,指针l右移 
			++l;
		}
	}
	//若最后r等于t的长度,说明该子序列能全部匹配到,则为true 
	return r==t.size()?true:false;
	 
}

int main(){
	string S="ababcd";
	string T="acd";
	printf("%d",isSubsequence(S,T)); 
}

对于③

代码及注释如下:

#include<cstdio>
#include<string>
#include<vector> 
using namespace std;

bool isCover(string s,string t){
	vector<int> chars(128,0);//该向量用来存储t中字符出现情况。
	for(int i=0;i<t.size();i++){
		++chars[t[i]];//索引存储字符的ascii码,值存储出现的频次。 
	} 
	int cnt=0;//记录s能覆盖t中的字符的个数
	for(int i=0;i<s.size();i++){
		if(--chars[s[i]]>=0){//s中有该字符,覆盖数+1,同时该字符频次-1 
			++cnt;
		}
		//将t全部覆盖 
		if(cnt==t.size()) return true;
	} 
	return false;
}

int main(){
	//这里假设字符串只有字母组成 
	string S="ababcd";
	string T="cda";
	printf("%d",isCover(S,T)); 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值