经常有题目或者题目的一个部分涉及到两字符串S和T之间的关系判断操作。
常见的有三种:
①求S是否包含T
例如S=“ababcd”,T=“abc”,很明显包含。
②求T是否是S的子序列
例如S=“ababcd”,T=“acd”,很明显是。
③求S是否能涵盖T中所有字符
例如S=“ababcd”,T=“cda”,很明显包含。
我们首先捋一捋①②③的关系。
若符合①必符合②和③;若符合②,不一定符合①,但必符合③;若符合③,则不一定符合①和②。它们的关系用图表示如下:
我们依次分析各种情况的求解方式:
对于①
该题有两种方法,一种是暴力法,还有一种是大名鼎鼎的KMP算法(这里就不细讲KMP,因为网上也有很多并且这算法不是很好理解,不是一时半会能讲懂的,有时间后面会专门写个博客讲述KMP)
首先暴力法,代码及注释如下:
#include<cstdio>
#include <string>
using namespace std;
bool bruteForce(string s,string t){
//使用双指针法
int l=0,r=0;
while(l<s.size()&&r<t.size()) {
//该字符匹配成功,指针l和r均右移
if(s[l]==t[r]){
++l;
++r;
} else{
//未匹配成功,指针l移到该次l匹配过程的起点的下一个,r归0。
/*
为什么l=l-r+1表示次匹配过程的起点的下一个点呢?
该次匹配开始之前r=0,到该次匹配错误,说明了l也走了r步。那么起点就是l-r。
起点的下一位就是l-r+1
*/
l=l-r+1;
r=0;
}
}
//若最后r等于t的长度,说明t被完全匹配,则为true
return r==t.size()?true:false;
}
int main(){
string S="abababcd";
string T="abc";
printf("%d",bruteForce(S,T));
}
主串S长度为m,模式串T长度为n,暴力法的时间复杂度为O(m*n)。
KMP算法,代码及注释如下:
#include<cstdio>
#include <string>
using namespace std;
//next[i]数组的意思该字符前i+1项的相同的最长前缀和最长后缀的长度-1,也可以理解为该最长前缀的结尾的索引。-1代表不存在。
void getNext(int next[],string t){
next[0]=-1;// 一个字符一定不存在相同前后缀。
//使用双指针l和r
int r=-1;
for(int l=1;l<t.size();l++){
while(r>-1&&t[r+1]!=t[l]){//下一个元素不相等,r需要向前回溯,左移到其前面字符的最长相同的前缀的结尾处(-1表示不存在)
r=next[r];
}
if(t[r+1]==t[l]){
++r;//下一个元素相等,则指针r右移,代表相同前后缀长度+1
}
next[l]=r;
}
}
bool KMP(string s,string t){
int next[t.size()];
getNext(next,t);
//使用双指针l和r
int r=-1;
for(int l=0;l<s.size();l++){
while(r>-1&&t[r+1]!=s[l]){//两串下一个元素不相等,r需要向前回溯
r=next[r]; //这里r是回溯到-1或者最长前缀的结尾位置,那么k+1就代表结尾下一个字符。而暴力法是归0,所以效率高于暴力法。
}
if(t[r+1]==s[l]){
++r;//两串下一个元素相等,则指针r右移,匹配成功的长度+1。
}
//匹配成功
if(r==t.size()-1) return true;
}
return false;
}
int main(){
string S="abababcd";
string T="abc";
printf("%d",KMP(S,T));
}
计算next数组需要将T串的每一个元素都求值,即时间复杂度为O(n)。匹配时S中每一个元素匹配时只需要调用T相对应元素的next值来进行匹配,所以时间复杂度为O(m)。
算法总复杂度为O(m+n)。
对于②
直接上代码,代码上有注释。
#include<cstdio>
#include <string>
using namespace std;
bool isSubsequence(string s,string t){
//使用双指针法
int l=0,r=0;
while(l<s.size()&&r<t.size()) {
//该字符匹配成功,指针l和r均右移
if(s[l]==t[r]){
++l;
++r;
} else{
//未匹配成功,指针l右移
++l;
}
}
//若最后r等于t的长度,说明该子序列能全部匹配到,则为true
return r==t.size()?true:false;
}
int main(){
string S="ababcd";
string T="acd";
printf("%d",isSubsequence(S,T));
}
对于③
代码及注释如下:
#include<cstdio>
#include<string>
#include<vector>
using namespace std;
bool isCover(string s,string t){
vector<int> chars(128,0);//该向量用来存储t中字符出现情况。
for(int i=0;i<t.size();i++){
++chars[t[i]];//索引存储字符的ascii码,值存储出现的频次。
}
int cnt=0;//记录s能覆盖t中的字符的个数
for(int i=0;i<s.size();i++){
if(--chars[s[i]]>=0){//s中有该字符,覆盖数+1,同时该字符频次-1
++cnt;
}
//将t全部覆盖
if(cnt==t.size()) return true;
}
return false;
}
int main(){
//这里假设字符串只有字母组成
string S="ababcd";
string T="cda";
printf("%d",isCover(S,T));
}