在人工智能领域中,MCP是什么?

MCP(Model Context Protocol )模型上下文协议。

Mcp的核心目标是为了制定统一的标准协议,来让大模型可以访问外部数据

简单来说,就是Mcp会设置很多个仓库叫mcp server 里面有工具可以给ai调用

从而实现大模型从对话走向执行。

 

 

04-12
### 关于AI MCP的相关内容 #### AI MCP认证 智子学院推出的“MCP导师认证计划”要求参与者在一个月内完成Azure AI Fundamentals (AI-900) 的认证考试[^1]。该认证旨在验证个人对于人工智能基础概念的理解以及其在Microsoft Azure平台上的应用能力。通过此认证后,持证者将以微软认证专家的身份为企业提供技术咨询服务。 #### AI MCP课程 针对希望深入了解并掌握Model Context Protocol(简称MCP)的技术人员,存在一系列详尽的学习资源可供利用。这些资源不仅涵盖了理论知识讲解还包含了实践操作指导,例如如何构建适合初学者使用的AI开发环境资料包、学习计划表以及其他辅助材料均已被整理成套,并可通过特定渠道获取[^3]。值得注意的是,这类课程特别强调了从零基础起步的设计理念,力求使每位学员都能够轻松入门复杂的人工智能领域。 #### AI MCP平台支持 MCP作为由Anthropic提出的开放式协议框架,在促进不同LLMs间高效协作方面发挥着重要作用[^2]。具体而言,它定义了一种通用的语言用于描述模型请求及其响应格式,从而简化了开发者将自定义功能集成至现有系统的流程。借助这一机制,无论是小型初创团队还是大型企业都能更便捷地实现跨平台部署需求。 ```python # 示例代码展示了一个简单的HTTP风格API调用模拟过程 import requests def call_mcp_endpoint(url, payload): headers = {'Content-Type': 'application/json'} response = requests.post(url, json=payload, headers=headers) return response.json() example_payload = {"action": "generate_text", "input": "Tell me about cats"} result = call_mcp_endpoint("https://api.example.com/mcp/v1", example_payload) print(result) ``` 上述脚本片段演示了向假设的支持MCP接口发送POST请求的方式方法之一;其中涉及到了JSON序列化处理及标准库`requests`模块的应用实例。 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值