自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(350)
  • 收藏
  • 关注

原创 YOLO11 改进、魔改| 全局-局部状态空间融合模块GLSS,通过融合八方向选择性状态空间建模与多尺度局部卷积,提升视觉任务中对复杂空间关系与多尺度目标的表征能力。

本文提出了一种改进遥感图像语义分割的GLSS模块,基于选择性状态空间模型(SSM)构建双分支架构。全局分支采用创新的八方向选择性扫描机制(8D-SSM),通过多方向Mamba块处理实现全方位长距离依赖建模;局部分支利用多核深度可分离卷积提取多尺度局部特征。该模块被集成到YOLO目标检测框架中,通过通道交互与空间对齐实现特征深度融合,有效增强了模型对复杂遥感场景的全局上下文理解能力和局部细节感知能力,同时保持了实时推理速度。实验表明,该方法能显著提升多方向目标检测和复杂背景下的识别性能。

2026-02-04 09:08:48 768

原创 YOLO12 改进、魔改| 全局 - 局部语义增强模块GLSS,过协同提取全局语义与局部细节特征并动态融合,为各类视觉任务提供更全面、精准的特征支撑,助力模型适配复杂场景与多尺度目标。

摘要:GLSS是一种创新的计算机视觉特征提取机制,通过"全局语义捕捉+局部细节强化+动态融合"的三元协同架构,解决了传统模型在复杂场景中全局与局部特征难以兼顾的痛点。该技术采用并行提取、自适应权重融合和残差连接保障的设计,在不显著增加计算成本的前提下,显著提升了目标检测的精度和鲁棒性。研究展示了GLSS与YOLOv12的集成方案,包括模块代码实现、配置文件修改和训练流程,为自动驾驶、智能监控等需要高精度视觉理解的场景提供了轻量化解决方案。实验表明,该方法能有效平衡全局场景理解与局部细节捕

2026-02-04 09:08:25 636

原创 YOLO12 改进、魔改| 结构感知多上下文块SAMC ,通过多尺度分流、双注意力增强与跨维度聚合的协同运作,精准捕获目标结构信息与多维度上下文关联,生成高判别力、低冗余的优质特征,为各类视觉任务赋能

摘要:SAMC(结构感知多上下文)模块针对计算机视觉中特征提取的局限性,提出"结构优先、多维融合"的解决方案。该模块通过三层递进处理实现高效特征提取:1)多尺度并行卷积捕获不同感受野特征;2)通道-空间双注意力机制过滤噪声;3)通道洗牌优化特征整合。在目标检测中,SAMC提升多尺度目标覆盖能力和抗干扰性;在语义分割中增强边界精度和结构完整性。升级版DAMC模块进一步引入动态尺度感知和跨尺度注意力融合,优化了超声图像处理性能。实验表明,将SAMC嵌入YOLO系列模型可在保持实时性的同时显著

2026-02-03 09:17:32 656

原创 YOLO11 改进、魔改| 结构感知多上下文块SAMC,过多尺度特征提取、通道 - 空间协同注意力与跨通道融合优化,精准捕捉目标的结构细节与上下文关联,生成高效判别特征,提升视觉任务的精度与稳健性。

本文提出Structure-Aware Multi-Context Block(SAMC)模块,通过多尺度特征提取、通道-空间协同注意力机制和特征融合优化,有效解决复杂场景下图像特征提取的挑战。SAMC采用并行多尺度卷积提取局部与全局特征,结合注意力机制强化目标结构表示,并通过通道交互消除冗余。该模块可提升目标检测的尺度适应性和定位精度,改善图像分割的边界识别效果。进一步提出的DAMC模块引入动态卷积和跨尺度注意力,增强对医学图像等复杂数据的适应性。文章还详细介绍了将SAMC集成到YOLOv11模型的具体实

2026-02-03 09:16:50 764

原创 YOLO12 改进、魔改| 多尺度曼巴块MMB,通过多尺度特征的并行提取、精细化精炼与自适应融合,为模型提供更全面的空间维度特征表征,突破单一尺度特征学习的局限。

摘要:本文提出多尺度曼巴块(MMB)模型,用于增强计算机视觉任务中的多尺度特征提取能力。MMB采用"多尺度并行提取-精细化精炼-自适应融合"架构,通过三级尺度特征流分别捕获细节、局部结构和全局语义,并利用2D选择性扫描模块优化特征。该模型在目标检测和语义分割任务中展现出优势,能同时兼顾细节精度和全局语义一致性。文章还详细介绍了将MMB嵌入YOLO架构的具体实现方法,包括代码修改步骤和配置文件调整,以提升YOLO的多尺度目标感知能力而不显著增加计算成本。

2026-01-30 09:10:19 576

原创 YOLO11 改进、魔改| 多尺度曼巴块MMB,通过多尺度特征提取、精炼与融合,增强模型对空间维度不同层级信息的捕捉能力,提高小目标多尺度的检测能力

本文提出一种新型多尺度特征融合模块MMB(Mixed-scale Mamba Block),用于解决传统Mamba模型在计算机视觉任务中的局限性。MMB通过并行处理不同尺度的特征流(细粒度细节、中层结构和高层语义),结合2D选择性扫描模块(2D-SSM)进行特征优化,最终融合多尺度信息。该模块具有线性计算复杂度优势,可有效增强模型对复杂场景的适应能力。实验表明,将MMB集成到YOLO架构中能显著提升目标检测性能,特别是在小目标识别和遮挡场景下的表现。文章详细介绍了MMB的实现原理、代码集成方法以及在YOLO

2026-01-30 09:10:00 790

原创 YOLO11 改进、魔改| 四维注意力机制Attention4D,通过空间、通道、尺度、上下文四维注意力的协同交互,深度挖掘特征间的关联信息,增强模型对复杂场景中多尺度、多类型目标的特征表征能力

本文提出了一种新型Attention4D注意力机制,用于解决计算机视觉任务中多尺度目标检测和分割的挑战。该机制通过构建跨空间、通道、尺度和上下文的四维注意力框架,实现多维度信息协同建模。其核心采用"校准-拆分-交互-融合"的闭环设计,包括特征校准层、拆分层、注意力交互层和融合层四个模块,能动态优化特征表征。实验表明,Attention4D在YOLO系列模型中的应用显著提升了目标检测精度,特别是在处理尺度差异、遮挡和复杂背景等场景时表现优异。同时,该机制也有效增强了图像分割任务的边界清晰度

2026-01-27 09:10:41 1096 1

原创 YOLO12 改进、魔改| 四维注意力机制Attention4D,是通过空间、通道、尺度、上下文四维注意力的协同建模,深度融合局部细节与全局语义信息,增强模型对多尺度、复杂场景目标的特征表征能力

Attention4D是一种创新的四维注意力机制,通过整合空间、通道、尺度和上下文四个维度的注意力,有效解决了计算机视觉任务中多尺度目标检测和语义分割的难题。该机制采用"特征校准-多支拆分-注意力交互-特征融合"的设计逻辑,能够同时捕捉局部细节和全局上下文信息。在目标检测中,Attention4D显著提升了定位精度和尺度适应性;在语义分割中则增强了边界清晰度和语义一致性。将其集成到YOLO系列模型中,可在不显著增加计算开销的前提下,提高检测速度和鲁棒性,尤其适用于复杂场景下的密集目标检测

2026-01-27 09:10:21 703

原创 YOLO11 改进、魔改| 双分支语义感知模块DSPM,是通过多尺度特征融合与注意力增强,实现目标特征的精细化提取与背景噪声抑制

摘要:本文提出一种针对红外小目标检测的DSPM模块,通过双分支结构(标准卷积+空洞卷积)实现多尺度特征融合,结合空间/通道注意力机制增强目标特征。该方法能有效解决红外目标信杂比低、背景复杂等问题,在YOLOv11中应用后显著提升了小目标检测性能。文章详细介绍了DSPM原理、实现步骤及与YOLO框架的集成方法,包括代码修改和配置文件调整过程,为红外目标检测提供了新的解决方案。

2026-01-22 09:18:51 1023

原创 YOLO12 改进、魔改| 双分支语义感知模块DSPM,通过双分支多尺度特征提取与双注意力特征增强,实现目标特征的精准提取、噪声抑制与语义强化,为目标检测、图像分割等任务提供高质量的特征支撑。

摘要:针对图像分析中目标尺度差异大、背景干扰强等问题,本文提出DSPM(双尺度特征互补+注意力校准)方法。该方法通过标准卷积与空洞卷积双分支结构实现多尺度特征融合,结合空间/通道注意力机制进行特征筛选优化。实验表明,DSPM可有效提升YOLO等模型对小目标和复杂背景的检测精度,在目标检测和语义分割任务中均表现出色。文中详细介绍了DSPM的原理结构、实现方法及其与YOLOv12的集成步骤,为改进目标识别性能提供了有效解决方案。

2026-01-22 09:18:31 646

原创 YOLO11 改进、魔改| 通道增强块CEB,通过双路径全局池化与通道自适应校准,强化通道间有效信息交互,抑制冗余特征,提升模型对通道维度关键信息的感知能力,为下游视觉任务提供更具辨识度的特征支持。

摘要: 通道增强块(CEB)是针对多模态图像融合任务中通道维度信息建模不足问题提出的创新解决方案。该模块通过双路径全局池化(GAP与GMP并行)捕捉整体统计特征与局部显著特征,结合通道自适应校准机制动态调整权重,有效强化目标特征并抑制背景噪声。CEB具有轻量化优势,可无缝集成至YOLO等检测模型,在复杂场景下提升小目标检测精度和边界分割锐度。实验表明,CEB通过通道洗牌与残差连接保持计算效率,显著增强模型对通道级特征差异的感知能力,为YOLOv11等模型提供即插即用的性能提升方案。

2026-01-20 09:59:20 846 1

原创 YOLO12 改进、魔改| 通道增强块CEB,通过双池化校准、通道洗牌与残差连接的协同作用,自适应强化通道级有效信息、抑制冗余,提升特征的判别力与完整性,为各类计算机视觉任务提供高质量特征支撑。

本文提出了一种通道增强块(CEB)模块,用于解决计算机视觉模型中通道维度建模不足的问题。CEB采用双路径并行处理机制,通过全局平均池化和全局最大池化分别提取特征图的全局统计信息和局部显著特征,并利用通道拆分、权重校准和通道洗牌等操作实现特征增强。实验表明,CEB在目标检测任务中能提升目标特征辨识度,在语义分割任务中可强化语义区分度。该模块可无缝集成到YOLO等模型中,在不显著增加计算开销的前提下提升性能。文章详细介绍了CEB在YOLOv12中的实现步骤,包括代码集成、模型配置和训练方法。

2026-01-20 09:58:48 604

原创 YOLO双backbone改进,层级特征融合编码器HFFE,通过注意力引导的跨层级特征聚合,实现不同特征的高效融合与背景噪声抑制,为目标检测与分割任务提供精准的特征支撑

摘要:针对红外小目标检测中U-Net变体存在的特征融合低效和噪声干扰问题,提出HierarchicalFeatureFusionEncoder(HFFE)模块。该模块通过双分支特征提取、空间注意力机制和坐标注意力模块实现跨层级特征融合,有效平衡细节与语义信息,抑制背景噪声。在YOLO双backbone架构中应用HFFE,可解决特征冗余问题,提升小目标检测精度和定位准确性。实验表明,该方法能显著降低误检率,适用于单/双模态检测任务。代码已开源,可直接集成到YOLO框架中使用。

2026-01-16 09:34:07 941

原创 YOLO11 改进、魔改| 自适应频率解耦融合模块AdaFD,通过动态生成自适应高低通滤波器,解耦并融合特征中的目标相关频率与背景噪声频率,为模型提供 “细节精准、语义完整、抗干扰强” 的高质量特征。

摘要:本文提出自适应频率解耦融合(AdaFD)模块,用于解决红外小目标检测和语义分割任务中固定频率处理方法的局限性。AdaFD通过动态生成高通和低通滤波器,实现高低频特征的解耦与增强:高频强化边缘细节,低频保留语义信息。该模块包含特征分组评估、自适应滤波器生成和频率解耦融合三个核心组件。实验表明,AdaFD能有效提升YOLO等模型的多尺度特征表达能力,增强小目标检测精度,改善语义分割的边界质量,同时保持较低计算开销。文章还详细介绍了AdaFD在YOLOv11中的具体实现步骤。

2026-01-15 08:40:51 1045

原创 YOLO26 来了:性能 Double!更快更强更轻量,无 NMS + 砍 DFL 直接封神!

YOLO26是2025年发布的YOLO系列最新模型,专为边缘设备和低功耗场景优化。其核心创新包括:1)移除DFL模块简化边界框回归,提升推理速度8-10%;2)采用端到端无NMS设计,降低延迟20-30%;3)提出ProgLoss动态损失和STAL小目标检测机制,使小目标AP提升12.7%;4)开发MuSGD混合优化器,训练轮数减少30%。这些改进形成效率、精度、部署的闭环优化,在CPU推理提速43%的同时,显著提升小目标检测能力,并简化跨平台部署流程。

2026-01-15 08:39:53 2193

原创 YOLO12 改进、魔改| 频率增强块FEB,通过频率域分解、定向增强与跨域融合,补全模型的频率感知能力,让特征同时兼具清晰的全局结构与丰富的局部细节。

本文提出频率增强块(FEB)来提升计算机视觉任务性能。FEB通过傅里叶变换将图像分解为幅度谱和相位谱,分别强化高频细节和结构信息,再融合优化后的频谱特征。实验表明,FEB能有效改善目标检测和语义分割中的细节丢失问题,增强模型对复杂场景的适应性。通过将FEB轻量化结构融入YOLO系列模型,可在不显著增加计算负担的情况下提升检测精度,特别是对小目标和恶劣环境的识别能力。文章详细介绍了FEB的原理、优势及在YOLOv12中的具体实现方法。

2026-01-14 09:10:31 766

原创 YOLO11 改进、魔改| 频率增强块FEB,通过频率域分解、针对性增强与逆转换,强化模型对图像高频细节与低频结构的双重感知能力,为下游视觉任务提供更全面、精准的特征支持。

本文提出频率增强块(FEB)用于提升多模态图像融合任务的性能。FEB通过傅里叶变换将图像分解为幅度谱和相位谱,分别增强高频细节和结构信息后逆变换回空间域。实验表明,FEB能有效强化目标检测中的边缘纹理特征,提升图像分割的边界精度。文章详细介绍了将FEB集成到YOLOv11模型的具体步骤,包括代码修改、配置文件调整和训练过程,为计算机视觉任务提供了一种增强频率感知能力的新方法。

2026-01-14 09:10:09 1134

原创 YOLO双backbone改进,频率穷尽融合机制FEFM,通过共性特征强化与差异特征强化双机制,在频率域高效建模跨分支特征的局部与长程相关性,全面利用共性核心信息与差异补充信息,提升特征融合的完整性

本文提出了一种频率域特征融合模块(FEFM),用于解决跨模态或多分支特征融合中的核心难题。该模块通过"共性强化+差异补充"的双机制融合框架,在频率域中同时建模局部相似性与长程相关性。FEFM包含四个关键步骤:特征编码、共性特征强化、差异特征强化和融合精炼,能够有效平衡语义一致性与细节丰富度。实验表明,将FEFM应用于YOLO双backbone架构时,不仅能提升复杂背景下目标的识别稳定性,还能增强对小目标和弱纹理目标的检测精度,同时保持较高的实时检测效率。模块化设计使其能灵活嵌入现有架构,

2026-01-13 10:03:53 1050

原创 YOLO双backbone改进,空间增强前馈网络SEFN,通过提取前置特征的局部空间信息构建门控,动态调制后置特征,实现局部空间一致性与长距离依赖的深度融合,高效强化模型的空间感知与特征优化能力。

本文提出了一种空间增强前馈网络(SEFN),用于解决计算机视觉任务中局部空间依赖与长距离依赖的融合问题。SEFN通过空间信息预提取、特征二分与门控构建、空间特征精细调制三个关键步骤,在不显著增加计算开销的前提下,实现了局部空间一致性与全局语义连贯性的平衡。特别针对YOLO双backbone架构(如CNN+Transformer/SSM),SEFN能有效弥补双分支的空间信息缺口,动态适配特征差异,增强目标边界定位,提升复杂场景下的检测精度。该模块采用轻量化设计,通过深度卷积和层归一化确保高效运行,为图像修复、

2026-01-13 10:03:01 867

原创 YOLO双backbone改进,双聚合注意力融合模块DAAFM,通过双聚合机制,自适应强化双backbone特征一致性、挖掘跨 backbone 特征互补性,实现高效精准的特征融合

摘要:双聚合注意力融合模块(DAAFM)通过自注意力与交叉注意力机制,有效解决多模态图像融合和目标检测中的特征融合问题。该模块兼顾模态内一致性和模态间互补性,利用负softmax机制增强特征差异性提取,适用于红外-可见光等模态差异显著场景。在YOLO双backbone架构中,DAAFM能精准平衡全局与局部特征,降低冗余噪声,提升跨尺度特征协同能力,同时保持计算高效性,显著改善目标检测精度。实验表明,该方法在LLVIP等数据集上效果显著,代码已开源。

2026-01-08 09:35:15 654

原创 YOLO双backbone改进,跨模态注意力机制CMA,通过将不同模态特征映射至统一空间并动态计算注意力权重,实现多模态信息的精准对齐与互补融合,突出任务相关关键信息,提升模型的检测能力

摘要:跨模态注意力机制(Cross-ModalAttention,CMA)通过模态对齐和注意力分配,有效解决了多模态信息融合中的维度失配问题。在YOLO双Backbone架构中,CMA能够统一不同支路的特征空间,实现细粒度特征对齐,增强特征互补性,从而提升复杂场景下的目标检测精度。该方法通过投影层、特征重塑、相似度计算等核心组件,动态调节注意力权重,使模型能更精准地关注关键信息。实践表明,CMA可显著改善双Backbone架构的性能,特别适用于红外-可见光等跨模态目标检测任务。

2026-01-08 09:33:56 840

原创 YOLO12 改进、魔改| 层级特征融合编码器HFFE,通过对齐、提纯、校准、融合四大步骤,整合跨层级特征的细节与语义优势,生成高质量融合特征,为视觉任务提供更精准的目标表征与位置线索。

摘要:HFFE(Hierarchical Feature Fusion Enhancement)是一种针对深度学习视觉任务中多尺度特征融合瓶颈的创新解决方案。该方法通过"层级协同、注意力引导、自适应校准"机制,采用特征对齐、空间注意力提纯、跨层交互校准和坐标注意力融合四步处理流程,有效解决了浅层与深层特征间的语义鸿沟与分布差异问题。实验表明,HFFE在目标检测中能提升小目标定位精度和复杂场景鲁棒性,在图像分割中可同时优化边界锐度和区域一致性。该模块可无缝集成到YOLO系列模型中,在不显著

2026-01-07 09:17:46 870

原创 YOLO11 改进、魔改| 层级特征融合编码器HFFE,通过跨层级特征的对齐、注意力提纯与自适应交互,生成兼具细粒度细节与强语义信息的融合特征,提升视觉任务中目标的判别力与定位精度。

本文提出层级特征融合编码器(HFFE)来解决深度学习视觉任务中多尺度特征的融合问题。HFFE通过跨注意力引导的层级交互实现特征自适应校准,包含四个关键步骤:输入对齐、注意力提纯、跨层交互和融合输出。该方法在目标检测中能保留细粒度信息并增强语义判别力,在图像分割中可平衡边界精度与区域一致性。将HFFE融入YOLO架构可显著提升多尺度检测能力,特别是小目标召回率,同时保持计算效率。文章详细介绍了HFFE的原理、优势及在YOLOv11中的实现步骤,包括代码集成和模型配置方法。实验结果表明该方法能有效提升复杂场景下

2026-01-07 09:17:13 1570

原创 YOLO双backbone改进,多尺度自适应空间注意力门控MASAG,通过多尺度特征融合、动态感受野调整与双向空间调制,实现不同分支特征的智能筛选与深度融合,抑制背景干扰,提升模型检测能力

本文提出了一种用于医学图像分割的轻量化特征融合模块MASAG,旨在解决传统方法在局部精细特征与全局语义信息融合上的不足。MASAG通过多尺度特征提取、动态空间注意力权重生成和双向特征调制,实现了编码器与解码器特征的自适应融合。研究进一步探讨了将MASAG应用于YOLO双backbone架构的优势,包括自适应特征融合、动态感受野匹配、背景噪声抑制和特征互补强化。实验表明,该方法能有效提升目标检测精度和边界定位准确性。论文还提供了基于YOLOv8的实现代码,支持单/双模态检测任务。

2026-01-06 09:29:39 1168

原创 YOLO双backbone改进,细节保留上下文融合模块DPCF,通过空间自适应门控机制与分通道精细化融合,动态平衡多分支特征的细节信息与语义信息,提升双backbone特征融合。

摘要:DPCF模块是一种针对多尺度特征融合优化的自适应权重分配机制,特别适用于YOLO双backbone架构。其核心采用"对齐-分割-自适应融合-精炼"四步策略,通过空间门控权重动态调节高低分辨率特征及双分支特征的融合比例。该方法能有效解决传统融合方式导致的细节丢失和语义模糊问题,在保持轻量化的同时显著提升小目标和弱对比度目标的检测精度。实验表明,DPCF可精准平衡双backbone的特征互补性,既保留细节特征又强化语义信息,且不影响YOLO的实时性能。

2026-01-06 09:26:08 835

原创 YOLO12 改进、魔改| 参数化小波下采样模块PWD,通过频率分解与空间互补的双分支协同、自适应融合机制,在降低特征维度、扩大感受野的同时,完整保留目标的关键空间细节与频率信息,避免特征碎片化.

本文提出了一种参数化小波下采样(PWD)模块,用于解决深度学习模型中传统下采样方法在细节保留和频率捕捉方面的矛盾。PWD采用双分支并行处理:Haar小波变换实现多尺度频率分解,分组卷积模拟空间局部聚合,通过通道注意力机制动态融合特征。实验表明,PWD在目标检测任务中能有效保留小目标细节并增强特征区分度,在语义分割任务中可提升边界精度和区域完整性。将PWD集成到YOLO模型中,可在保持实时性的同时显著提升检测性能。文章还详细介绍了PWD在YOLOv12中的实现步骤和代码配置方法。

2026-01-05 09:40:52 648

原创 YOLO11 改进、魔改| 参数化小波下采样模块PWD,通过空间 - 频率双分支协同与自适应融合,在降低特征维度的同时保留目标的关键空间细节与频率信息

本文提出参数化小波下采样(PWD)模块,通过融合小波变换与可学习卷积,解决传统下采样方法丢失细节、特征碎片化的问题。PWD采用双分支结构:Haar小波分支分解频率特征,分组卷积分支保留空间细节,并通过注意力机制自适应融合。实验表明,PWD在目标检测中能提升小目标识别率,在语义分割中可优化边界精度。将其集成到YOLOv11模型后,在保持实时性的同时显著提高了检测性能。文中详细介绍了PWD的原理结构、实现优势以及在YOLOv11中的具体集成方法。

2026-01-05 09:40:24 994

原创 YOLO11 改进、魔改| 局部重要性注意力LIA ,以极简计算开销实现高阶特征交互,自适应强化局部关键特征、抑制冗余信息,提升模型检测能力。

本文提出了一种新型局部重要性注意力机制(LIA),用于解决计算机视觉任务中传统注意力方案的计算效率与特征表征能力的平衡问题。LIA通过"局部重要性建模+轻量门控校准"的核心设计,以线性复杂度实现二阶信息交互,在保持低计算开销的同时增强特征表达能力。该机制包含局部重要性提取、门控校准和激活上采样三个模块,可有效应用于目标检测和图像分割任务。文章还详细介绍了将LIA集成到YOLOv11模型的具体实现步骤,包括代码结构修改、配置文件调整和训练参数设置,为轻量化模型性能提升提供了实用解决方案。

2025-12-22 09:09:59 1068

原创 YOLO12 改进、魔改| 局部重要性注意力LIA,以线性计算复杂度实现高阶特征交互,动态强化局部关键特征、抑制冗余信息,在不牺牲推理速度的前提下,提升视觉模型的特征表征能力与任务适配性。

本文提出局部重要性注意力(LIA)机制,解决计算机视觉中注意力模型性能与效率难以兼顾的问题。LIA通过"局部特征聚焦+轻量动态校准"的设计,以线性计算复杂度实现高阶特征交互:1)使用SoftPool和卷积构建局部重要性图谱;2)引入门控机制进行动态校准;3)通过双线性插值恢复原始尺寸。实验表明,LIA在目标检测中能精准聚焦关键特征,在图像分割中可细化边界语义,同时保持高效推理速度。研究还展示了将LIA集成到YOLOv12模型的具体实现方案,包括代码结构修改和配置文件调整,为轻量化注意力机

2025-12-22 09:09:37 877

原创 YOLO12 改进、魔改| 多尺度自适应空间注意力门控MASAG,通过动态调整感受野、优化多尺度特征融合与空间注意力分配,实现局部细节与全局语境的精准协同,高效抑制冗余干扰,为视觉任务提供更优质的特征

摘要:针对医学影像等复杂视觉任务中目标尺寸、形状差异大的问题,本文提出Multi-Scale Adaptive Spatial Attention Gate(MASAG)模块。该模块通过多尺度特征融合、空间选择、跨调制交互和重校准四阶段处理,动态调整感受野并优化特征融合,有效平衡局部细节与全局语义。实验表明,MASAG能显著提升目标检测和图像分割性能,尤其改善多尺度目标捕捉能力。文章详细介绍了将MASAG集成到YOLOv12模型的具体实现方法,包括代码结构修改和配置文件调整流程,为复杂视觉任务提供了新的解决

2025-12-19 09:27:07 1043

原创 YOLO11 改进、魔改| 多尺度自适应空间注意力门控MASAG,通过动态调整感受野范围、优化多尺度特征融合方式与空间注意力分配逻辑,实现局部细节与全局语境的精准协同,高效抑制冗余干扰,为各类视觉任务

摘要:本文提出MASAG(多尺度自适应空间注意力门)模块,旨在解决复杂视觉任务中局部与全局特征协同的难题。该模块通过多尺度特征聚合、动态空间权重分配、双向交互融合和特征重校准四个关键步骤,实现感受野与注意力的自适应调整。实验表明,MASAG能有效提升YOLO等模型在多尺度目标检测和图像分割中的性能,尤其改善了小目标检出率和边界分割精度。文章详细阐述了MASAG的结构设计原理,并提供了将其集成到YOLOv11模型的具体实现方法。

2025-12-19 09:26:45 1182

原创 YOLO12 改进、魔改| 残差通道 - 空间注意力块RCSAB,是通过残差连接保障特征完整性,结合通道与空间双重注意力机制自适应优化特征分布,强化目标相关特征、抑制背景干扰,提升检测能力。

本文提出了一种融合残差连接与双重注意力机制的RCSAB模块,用于提升计算机视觉任务中的特征提取能力。该模块通过通道注意力筛选关键特征通道,空间注意力聚焦目标区域,结合残差连接保留原始特征,实现了特征提纯与抗干扰能力的双重提升。实验表明,RCSAB在目标检测中能增强小目标识别和定位精度,在图像分割中可优化边界细节。该模块可无缝集成到YOLO系列模型中,通过简单的代码修改即可显著提升检测性能,特别适用于复杂背景下的视觉任务。

2025-12-18 09:06:20 1008

原创 YOLO11 改进、魔改| 残差通道 - 空间注意力块RCSAB,通过残差连接与双重注意力校准的协同,自适应优化特征图的通道权重与空间分布,强化目标相关特征、抑制背景干扰,提高模板检测能力。

摘要:RCSAB(残差通道-空间注意力模块)通过结合残差学习与双重注意力机制,有效提升计算机视觉任务中的特征提取能力。该模块利用通道注意力筛选关键特征通道,空间注意力聚焦目标区域,配合残差连接保持特征完整性。在目标检测中增强小目标识别能力,在图像分割中改善边界精度。实验表明,将RCSAB集成到YOLO系列模型中,能显著提升特征质量与检测性能,且兼容现有网络架构。研究提供了详细的模块实现方案和YOLOv11集成方法,为复杂场景下的视觉任务提供有效解决方案。

2025-12-18 09:06:13 861

原创 双 Backbone 架构也能跑单模态任务?—— 提升单模态数据的特征增强与性能突破

本文探讨了单模态目标检测中双Backbone架构的创新应用,突破了传统"双Backbone=双模态"的认知局限。研究提出将单模态数据通过差异化设计的双Backbone(细节分支+语义分支)进行并行处理,实现特征增强与性能提升。实验表明该方法在小目标检测、鲁棒性等方面显著优于传统单Backbone结构(mAP50提升4.6%),特别适用于工业检测、航拍等需要兼顾细节与语义的场景。文章详细阐述了架构设计、训练策略及适用场景,为单模态目标检测提供了新的优化思路。

2025-12-12 09:19:23 724

原创 YOLO 双 Backbone 双模态融合:以 LLVIP 数据集为例的红外 - 可见光目标检测实践

本文针对弱光环境下目标检测的挑战,提出了一种基于YOLO架构的双Backbone红外-可见光融合检测方法。通过分析LLVIP数据集的特点,指出可见光图像在夜间存在噪声和模糊问题,而红外图像能保持结构特征但缺乏语义信息。研究设计了三种特征融合方式:简单拼接、加权融合和跨模态注意力机制,其中注意力机制表现最佳。实验采用双分支结构分别处理两种模态,在高层进行特征融合,最终实现夜间行人检测性能的提升。该方法充分利用了红外图像的结构优势和可见光图像的细节信息,为复杂场景下的目标检测提供了有效解决方案。

2025-12-12 09:13:21 1282

原创 YOLO12 改进、魔改| 空间与通道协同注意力模块SCSA,通过空间与通道维度的深度协同,破解传统注意力机制的语义利用不足与差异处理难题,实现特征提取精度与泛化能力的双重提升

SCSA:空间与通道协同注意力机制助力视觉任务优化 摘要:本文提出SCSA(空间与通道协同注意力)机制,通过多语义空间引导与通道差异缓解的协同设计,解决传统混合注意力在特征融合中的不足。SCSA包含共享多语义空间注意力(SMSA)和渐进式通道自注意力(PCSA)两个模块,分别实现多尺度空间语义提取和通道特征优化。在目标检测和图像分割任务中,SCSA能有效提升模型对多尺度目标的识别能力,增强特征判别性。实验表明,该机制可无缝集成到YOLO系列模型中,在保持实时性的同时显著提升检测精度。SCSA的轻量化设计使其

2025-11-28 19:03:15 1214

原创 YOLO11 改进、魔改| 空间与通道协同注意力模块SCSA,通过空间与通道注意力的协同作用,提升视觉任务的特征提取能力与泛化性能。

SCSA(空间-通道协同注意力)机制针对现有注意力模块的不足,提出"多语义空间引导+通道语义差异缓解"的协同方案。通过共享多语义空间注意力(SMSA)提取层级空间信息,配合渐进式通道自注意力(PCSA)缓解语义差异,在保持轻量化的同时提升特征表示能力。应用于目标检测时,能有效增强多尺度目标识别能力;在分割任务中可改善边界精度。该机制可无缝集成到YOLO系列模型,通过代码模块替换实现性能提升而不显著增加计算负担。实验表明SCSA能有效解决密集目标、小目标检测等难题,同时保持模型的高效性。

2025-11-28 19:03:00 1080

原创 YOLO12 改进、魔改| 通道与空间注意力模块CASAB,筛选关键特征、抑制冗余信息,提升复杂场景中的检测能力

本文提出CASAB模块以解决计算机视觉中传统特征提取方法的局限性。该模块采用"通道筛选+空间聚焦"的双维度注意力协同机制:通道层面通过池化操作和全连接层生成注意力权重,筛选关键特征通道;空间层面利用多种池化方式和深度卷积定位重要区域。实验表明,CASAB在目标检测任务中能提升多尺度目标的定位精度,在图像分割任务中可改善边界模糊问题。将其集成到YOLO系列模型中,可在保持实时性的同时增强小目标和遮挡目标的检测能力。文章详细介绍了CASAB的代码实现方式及其在YOLOv12中的集成步骤。

2025-11-17 09:56:57 1120

原创 YOLO11 改进、魔改| 通道与空间注意力模块CASAB ,通过双维度注意力机制自适应强化关键特征、抑制冗余信息,提升模型对重要特征的捕捉与利用能力

CASAB是一种融合通道与空间注意力的深度学习模型优化方法。针对CNN局限性和Transformer不足,它通过双维度协同机制:在通道维度采用全局池化和全连接层优化特征权重,在空间维度结合多类型池化和深度卷积定位关键区域,最终通过加权融合提升特征表达能力。实验表明,将CASAB集成到YOLOv11中,可显著增强多尺度目标检测能力,有效解决边界模糊和背景干扰问题,同时优化计算效率。该方法通过精准筛选关键特征,为复杂场景下的目标检测和分割任务提供了更高效的特征表达方案。

2025-11-17 09:56:01 1211

原创 YOLO12 改进、魔改|秩增强线性注意力RALA,通过增强 KV 缓冲与输出特征的矩阵秩,增强 YOLO 对小目标、复杂场景目标的识别能力

RALA是一种解决线性注意力低秩问题的新型注意力机制。针对传统线性注意力在视觉任务中空间建模能力不足的缺陷,RALA通过KV缓冲秩增强和输出特征秩增强两个关键模块,在保持线性复杂度的同时提升特征矩阵的秩。KV缓冲模块引入上下文感知权重增强信息多样性,输出特征模块通过通道交互和原始信息调制实现满秩特征表达。实验表明,RALA在目标检测和图像分割任务中能够有效提升细粒度特征建模能力,且计算高效。该机制可集成到YOLO系列模型中,在不显著增加计算负担的情况下增强目标检测性能,特别是对小目标和复杂场景的处理能力。

2025-11-14 09:30:07 1282

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除