大家好呀,我是爱折腾技术的 31岁程序员小米。前段时间陪朋友去面试,回来以后他一脸生无可恋地跟我说:“小米,面试官只问了我一个问题:你们公司线上有上亿数据的大表,你怎么优化查询?”
听到这句话,我当场笑出了声,心里却暗暗捏了把汗。为啥?因为这类问题其实特别能考察一个程序员的“综合素质”,不仅仅是写几条 SQL 就能糊弄过去的事,而是要 从数据库设计、SQL写法、缓存架构到系统拆分,一环套一环,牵扯到的知识面非常广。
今天,我就借着这个问题,跟大家聊聊“大表数据查询优化的五重境界”。保证你看完后,不仅能在面试时侃侃而谈,还能真正应用到工作里。
第一重境界:优化 Schema、SQL 语句 + 索引
面试官一旦抛出这个问题,第一反应不要急着上升到分库分表。先从“最容易改、代价最低的地方”下手——也就是 表结构、索引和 SQL 写法。
我给你讲个真实的故事。
之前我们有个用户表,表里存了几千万条数据。某天产品经理让我们查“过去30天登录过的活跃用户数量”。一开始小伙伴写了个 SQL:

看起来很优雅对不对?结果一跑,数据库 CPU 飙升到 800%,线上报警直接打爆了运维的手机。
后来我排查发现,login_time 这个字段没加索引,查询全表扫描,性能能好吗?于是我立马加了个索引:

最低0.47元/天 解锁文章
1327

被折叠的 条评论
为什么被折叠?



