一 从何而来:
勾股定理的发现有两种说法:
1.毕达哥拉斯
在西方,最早知被认为发现了勾股定理的人是毕达哥拉斯,大约在BC500的时期,毕达哥拉斯在研究正方形数时被认为发现了勾股定理,但毕达哥拉斯的证明并没有流传下来,所谓杀一百头牛来庆祝发现毕达哥拉斯定理更像一个段子。
2.西周初数学家商高
在东方,在大约BC100时期成书的周髀算经中,有借商高和周公的嘴说出了那个最著名的“故折矩,以为句广三,股修四,径隅五”,这是中国最早记录关于勾股数的文献。
二 内容:
1.概括:
勾股定理(英语:Pythagorean theorem)是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一 即,如假设直角三角形的一条直角边为a,另一条直角边为b,而斜边为c(如图),则有 a² + b² = c²
2.证明过程:
如图,有一大正方形 ABCD其边长为c,其中包含4个小直角三角形和一个小正方形,小三角形的三边长分别为a,b,c,而小正方形边长为(b-a)故:大正方形面积为 4 * (a * b) / 2 + (a - b)² 又∵大正方形边长为c, ∴c² = 4 * (a * b) / 2 + (a - b)² 即 c² = 2*ab + (a-b)² ∴ a² + b² = c² 其他证法:
3 其他结论:
c = sqrt(a² + b²)同理 a = sqrt(b² + c²) , b = sqrt(a² + c²)