勾股定理的相关知识

勾股定理是平面几何的基本定理,阐述了直角三角形两直角边平方和等于斜边平方。该定理由毕达哥拉斯和中国古代数学家商高分别独立发现。证明方法多样,包括利用正方形面积关系。此定理在数学和IT技术中有广泛应用,如坐标几何、计算机图形学等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 从何而来:

        勾股定理的发现有两种说法:

1.毕达哥拉斯

        在西方,最早知被认为发现了勾股定理的人是毕达哥拉斯,大约在BC500的时期,毕达哥拉斯在研究正方形数时被认为发现了勾股定理,但毕达哥拉斯的证明并没有流传下来,所谓杀一百头牛来庆祝发现毕达哥拉斯定理更像一个段子。

2.西周初数学家商高

        在东方,在大约BC100时期成书的周髀算经中,有借商高和周公的嘴说出了那个最著名的“故折矩,以为句广三,股修四,径隅五”,这是中国最早记录关于勾股数的文献。

二 内容:

1.概括:

        勾股定理(英语:Pythagorean theorem)是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一                                   即,如假设直角三角形的一条直角边为a,另一条直角边为b,而斜边为c(如图),则有      a² + b² = c²

 

 2.证明过程:

        如图,有一大正方形 ABCD其边长为c,其中包含4个小直角三角形和一个小正方形,小三角形的三边长分别为a,b,c,而小正方形边长为(b-a)故:大正方形面积为  4 * (a * b) / 2 + (a - b)²          又∵大正方形边长为c, ∴c² =  4 * (a * b) / 2 + (a - b)² 即 c² =  2*ab + (a-b)² ∴  a² + b² = c²                 其他证法:

 3 其他结论:

c = sqrt(a² + b²)同理 a =  sqrt(b² + c²)  , b = sqrt(a² + c²)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值