【Papernotes】Improving Deep Learning for Airbnb Search

论文地址: ACM (https://dl.acm.org/doi/abs/10.1145/3394486.3403333)

1. 写在前面

许多观众和影评人会对某个导演的电影情有独钟,即使他们曾经拍过烂片,观众待他们依然如初恋,比如拍出了《阳光灿烂的日子》的姜文。

对于 Airbnb 的论文,我也抱有同样的感情。何况从 KDD'18 的最佳论文,到这两年他们将深度学习应用于搜索实践的两篇论文,篇篇佳作,字字珠玑。

本文是 Airbnb 发表于 KDD'20 的论文,是前一篇《Applying Deep Learning to Airbnb Search》的续作,讲述了他们在搜索排序模型迭代方面的尝试。第二节写得尤其好,为科学炼丹做出了良好示范!

本文,我们以论文的第二节为范本,来看看他们是如何做数据分析、如何做模型迭代的。保证原汁原味!(全文约3500字,阅读时长约 20 分钟)

前两篇论文的笔记在这里,诸位同道不妨先看一看,特别是一脉相承的《Applying Deep Learning to Airbnb Search》:

【Papernotes】(KDD'19)  Applying Deep Learning to Airbnb Search

【Papernotes】(KDD'18) Real-time Personalization using Embeddings for Search Ranking at Airbnb

2. 模型优化

在正式开始之前,我们先来看一下他们的基线模型,一个双隐层的神经网络:

  1. 输入的特征是房源(listing)的基本特征,如价格、历史预订数等,以及一些类别特征的 embeddings;

  2. 两个隐藏层分别是 127 维、83 维的全连接层,使用 ReLU 作为激活函数。

这是他们上一个工作1的结论之一:加深模型对于 CNN 这样的模型是有效的优化手段,但是对于他们的场景(搜索排序),模型容量并不是问题,两个隐藏层已经足够了

既然加深网络不是模型迭代的方向,他们开始尝试一些专用的网络架构,比如 Deep&Wide2、基于注意力机制的网络3等等。但是都失败了。

这里,他们失败的教训与洞见是:特定深度模型的成功应用,与具体业务、产品是高度绑定的。简单的拿来主义——只看到一个模型的成功,却看不到它解决了基线模型的哪些痛点——是危险的。深度学习欠解释的特点,使得理解一个模型究竟解决什么困难、又是如何解决的,变得更加困难。这又使得深度模型的迁移应用变得更加困难

于是,他们放弃了论文驱动的模型迭代方式(下载论文->复现模型->A/B测试),坚持第一性原理,从用户第一的核心价值观出发,对模型进行迭代优化。

所谓用户第一的模型迭代方式,就是发现并量化用户的问题,以解决用户的问题为目标&#x

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Adversarial attacks are a major concern in the field of deep learning as they can cause misclassification and undermine the reliability of deep learning models. In recent years, researchers have proposed several techniques to improve the robustness of deep learning models against adversarial attacks. Here are some of the approaches: 1. Adversarial training: This involves generating adversarial examples during training and using them to augment the training data. This helps the model learn to be more robust to adversarial attacks. 2. Defensive distillation: This is a technique that involves training a second model to mimic the behavior of the original model. The second model is then used to make predictions, making it more difficult for an adversary to generate adversarial examples that can fool the model. 3. Feature squeezing: This involves converting the input data to a lower dimensionality, making it more difficult for an adversary to generate adversarial examples. 4. Gradient masking: This involves adding noise to the gradients during training to prevent an adversary from estimating the gradients accurately and generating adversarial examples. 5. Adversarial detection: This involves training a separate model to detect adversarial examples and reject them before they can be used to fool the main model. 6. Model compression: This involves reducing the complexity of the model, making it more difficult for an adversary to generate adversarial examples. In conclusion, improving the robustness of deep learning models against adversarial attacks is an active area of research. Researchers are continually developing new techniques and approaches to make deep learning models more resistant to adversarial attacks.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值