python scrapy介绍+豆瓣案列

本文介绍了Python Scrapy框架的使用,包括创建项目、设置headers、爬取豆瓣标题、使用XPath解析、处理异常标签、运行命令及数据管道的运用,详细讲解了Scrapy爬虫的实现过程。
摘要由CSDN通过智能技术生成

python scrapy介绍

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

scrapy命令

在这里插入图片描述

cd路径下,scrapy startproject 命名

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

命名的doubanspider.py:

在这里插入图片描述

item文件:

在这里插入图片描述

middlewaves:

在这里插入图片描述
在这里插入图片描述

pipline:

在这里插入图片描述

setting:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

scarpy执行命令1——终端输入scrapy crawl 名字

在这里插入图片描述
在这里插入图片描述

运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解决:复制一个headers放在setting的请求头处

在这里插入图片描述

加了请求头后

在这里插入图片描述

爬取豆瓣的标题

在这里插入图片描述
在这里插入图片描述

用xpath,之前用的是from lxml import etree,而在scrapy有xpath封装

在这里插入图片描述

现在的导入命令:from scrapy.http.response.html import HtmlResponse

在这里插入图片描述
在这里插入图片描述

在setting中添加这一句,可以只呈现所要的结果

在这里插入图片描述
在这里插入图片描述

结果多了selectors,解决方式是用extract()【多条数据】,或者getall()【多条数据】,extract_first()【一条数据】,get()【一条数据】

在这里插入图片描述
在这里插入图片描述

在书和音乐中多了一个\n,原因是这里多了一个em标签

在这里插入图片描述

解决方式,先获取这个em标签,再用其他的代替他(有的标签没有em,就是空了,因此,空的就执行以下语句)

在这里插入图片描述

运行scrapy的第二个方式,在文件夹中创建一个新的py文件运行

在这里插入图片描述
在这里插入图片描述

方式1:from scrapy import cmdline,然后执行cmdline.execute('scrapy.crawl 文件名’).split()

在这里插入图片描述

方式2 ——既然是分割,直接在这里分割:from scrapy import cmdline,然后执行cmdline.execute([‘scrapy’, ‘crawl’, ‘douban’])

在这里插入图片描述
在这里插入图片描述

import scrapy
# from lxml import etree 之前用xpath的导入
# 现在导入的命令
from scrapy.http.response.html import HtmlResponse
class DoubanSpider(scrapy.Spider):
    name = 'douban' # 爬虫程序的名字
    allowed_domains = ['douban.com'] # 爬取范围 允许的范围可以多个 给最大的范围
    start_urls = ['http://douban.com/'] # 开始的网页 起始的url地址
    # 解析方法
    # 目标url:豆瓣 https://www.douban.com/
    def parse(self, response):
        # print('*'*30)
        # print(response)
        # print(type(response))
        # print('*' * 30)
        # 用xpath找到所需数据 //*[@id="anony-movie"]/div[1]/div[1]/div[1]/ul/li
        li_lst =response.xpath('.//div[@class="side-links nav-anon"]/ul/li')
        item ={}
        # 要的是li的a标签的文本
        for li in li_lst:
            # response 为我们封装的方法如:xpath css 在获得selector对象时
            # 如果要获得这个对象当中的文本数据,
            # 旧方法
            # extract_first() 返回一条数据
            # extract() 返回多条
            # 新方法
            # get() 返回一条数据
            # getall() 返回多条数据
            # 先获取em标签的内容
            item['name']=li.xpath('a/em/text()').get()
            # 这里的逻辑意思是:这里item['name']是em标签的内容, 因为只有一个,如果再取不到了,那么就执行下面的逻辑,把要找的内容代替原先的item['name']的em标签文本
            # 有的标签没有em,就是空了,因此,空的就执行以下语句
            if item['name'] ==None:
                item['name'] =li.xpath('a/text()').extract_first()
            # item['name'] = li.xpath('a/text()').get()
            # 给的是selector对象
            # 发现有一个em标签
            print(item)

# 在这里运行scrapy
from scrapy import  cmdline
# 方式1
# cmdline.execute('scrapy crawl douban'.split())
# 方式2 既然是分割,直接在这里分割
cmdline.execute(['scrapy', 'crawl', 'douban'])

在这里插入图片描述

把数据给管道

在这里插入图片描述
在这里插入图片描述

scrapy爬虫程序:

在这里插入图片描述

pipline文件:

在这里插入图片描述

start文件

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

pipline管道文件:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结果:

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值