leetcode 110.平衡二叉树
题目描述
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true
。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false
。
解题思路
平衡二叉树的概念:一个二叉树每个节点的左右两个子树的高度差的绝对值不超过1。
这个概念就说明了一个二叉树,如果是平衡二叉树,就要保证以每个节点为根节点的子二叉树都是平衡二叉树,那么整个树才是平衡二叉树。
那么就需要考虑下面的情况:
- 左子树是平衡二叉树,否则直接返回false
- 右子树是平衡二叉树,否则直接返回false
- 每个子树的高度
- 计算左右子树的高度差是否小于等于1,否则也直接返回false
根据上述的叙述实现代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
// 空节点为平衡二叉树
if(root == NULL){
return true;
}
if(!isBalanced(root->left)) return false; // 左子树是否为平衡二叉树
if(!isBalanced(root->right)) return false; // 右子树是否为平衡二叉树
// 获取左右子树的高度
int left = depth(root->left);
int right = depth(root->right);
return abs(left-right) <= 1? true:false; // 计算高度差是否符合
}
/*
* 获取左右子树的高度
*/
int depth(TreeNode* root){
// 节点为空,深度为0
if(root == NULL){
return 0;
}
// 叶子节点的深度为1
if(root->left == NULL && root->right == NULL){
return 1;
}
int left = depth(root->left); // 左子树的高度
int right = depth(root->right); // 右子树的高度
return left>=right?left+1:right+1; // 那个子树的高度较高,在此基础上加1
}
};
欢迎大家关注我的个人公众号,同样的也是和该博客账号一样,专注分享技术问题,我们一起学习进步