比FFT还容易明白的NTT(快速数论变换)

NTT(快速数论变换)是一种用于加速多项式乘法的算法,尤其适合在模域中进行计算,因为它可以取模且避免了FFT的精度问题。NTT基于数论中的原根性质,其优点包括能进行模运算、无精度误差,但要求系数为整数且模数有限制。在计算过程中,原根代替了FFT中的单位根,时间复杂度为O(nlog2n)。学习NTT需要掌握原根等相关前置知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NTT相关

一种快速数论变换算法,这种算法是以数论为基础,对样本点为的数论变换,按时间抽取的方法,得到一组等价的迭代方程,有效高速简化了方程中的计算公式·与直接计算相比,大大减少了运算次数。(见快速傅里叶变换)。
在计算机实现多项式乘法中,我们所熟知的快速傅里叶变换(FFT)是基于n次单位根 (omega) 的优秀性质实现的,而由于其计算时会使用正弦函数和余弦函数,在不断运算时无法避免地会产生精度误差。而多项式乘法有些时候会建立在模域中,在对一些特殊的大质数取模时,便可以考虑用原根g来代替 ,而这些特殊的大质数的原根恰好满足 的某些性质,这使得多项式乘法在模域中也可以快速的分治合并。
——百度百科

NTT(Number Theoretic Transform),中文名快速数论变换
F F T FFT FFT一样, N T T NTT NTT也用来加速多项式乘法,不过 N T T NTT NTT最大的优点是可以取模
或者可以理解为 N T T NTT NTT F F T FFT FFT取模升级版

  • 好像 N T T NTT NTT比起 F F T FFT FFT来难的知识点更少了emm

NTT的优缺点

优点

  • 能取模 F F T FFT FFT的复数你给我来取个模

  • 没有精度差 F F T FFT FFT浮点数的精度怎么也会出一点问题

  • 由于均为整数操作(虽然取模多), N T T NTT NTT常数小,通常比一大堆浮点运算的 F F T FFT FFT(其实这是放屁)

我只能说 N T T NTT NTT小数据下表现良好…

缺点

  • 多项式的系数都必须是整数

  • 模数有限制 N T T NTT NTT题的模数通常都是相同 998244353 998244353 998244353

  • 其实这些模数的原根通常都是 3 3 3


NTT前置知识&技能

原根

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值