NTT快速数论变换

NTT

N T T NTT NTT F T T FTT FTT十分相似,在 F T T FTT FTT中使用了单位复根 ω \omega ω来取函数值,在 N T T NTT NTT中则使用原根 g g g来取函数值。在 N T T NTT NTT中,所有的数都是模意义下的。

g g g​的一些性质
  1. g 1 , g 2 , ⋯   , g p − 1 g^1,g^2,\cdots,g^{p-1} g1,g2,,gp1在模 p p p意义下互不相同
  2. 根据欧拉定理可知 g p − 1 ≡ 1 g^{p-1} \equiv 1 gp11
g g g来替换 ω \omega ω实现 F F T FFT FFT N T T NTT NTT的转化

其实只要 g g g能够在模意义下实现 ω \omega ω的性质就行了。

假设 p = q n + 1 p=qn+1 p=qn+1​​,其中 n n n​​是一个 2 2 2​​的幂,我们钦定在对 f n ( x ) f_n(x) fn(x)进行 N T T NTT NTT​​时使用的单位原根是 g n g_n gn,其计算方式为 g n = g q = g p − 1 n g_n=g^{q}=g^{\frac{p-1}{n}} gn=gq=gnp1

下面考虑 ω \omega ω F F T FFT FFT中使用到的性质:

  1. ω 2 n 2 i = ω n i \omega_{2n}^{2i}=\omega_{n}^{i} ω2n2i=ωni g 2 n 2 i = g p − 1 2 n ⋅ 2 i = g p − 1 n ⋅ i = g n i g_{2n}^{2i}=g^{\frac{p-1}{2n}·2i}=g^{\frac{p-1}{n}·i}=g_{n}^{i} g2n2i=g2np12i=gnp1i=gni
  2. ω n n 2 = − 1 \omega_{n}^{\frac{n}{2}}=-1 ωn2n=1​, g n n 2 = g p − 1 2 = g p − 1 = 1 g_{n}^{\frac{n}{2}}=g^{\frac{p-1}{2}}= \sqrt {g^{p-1}}=\sqrt 1 gn2n=g2p1=gp1 =1 ,根据二次探索定理可知,在模意义下 1 \sqrt 1 1 只有两种取值,即 1 1 1 p − 1 p-1 p1,根据原根的性质一排除取值为 1 1 1的可能,那么 g n n 2 = 1 = p − 1 = − 1 g_{n}^{\frac{n}{2}}=\sqrt 1=p-1=-1 gn2n=1 =p1=1
  3. ∀ k ∈ Z , ω n k n = 1 \forall k \in Z,\omega_{n}^{kn}=1 kZ,ωnkn=1 ∀ k ∈ Z , g n k n = ( g n n ) k = ( g p − 1 ) k = 1 \forall k \in Z,g_{n}^{kn}=(g_{n}^{n})^k=(g^{p-1})^k=1 kZ,gnkn=(gnn)k=(gp1)k=1
F F T FFT FFT N T T NTT NTT

我们只要把单位复根替换为单位原根即可,一切计算都在模意义下进行

#include<bits/stdc++.h>
using namespace std;
const int mod=998244353;
const int N=1<<22;
int f[N],g[N],h[N];
int r[N];
int nf,ng,nh=1;
int ksm(int x,int y){
	int res=1;
	while (y){
		if (y&1) res=1ll*res*x%mod;
		x=1ll*x*x%mod;
		y>>=1;
	}
	return res;
}
void FFT(int *f,int rev){//rev=1->DFT  rev=-1->IDFT
	for (int i=0;i<nh;++i) if (r[i]<i) swap(f[i],f[r[i]]);
	for (int l=2;l<=nh;l<<=1){
		for (int i=0;i<nh;i+=l){
			int step=ksm(3,(mod-1)/l),mul=1;
			for (int j=0;j<(l>>1);++j){
				int tmp=f[i+j+(l>>1)];
				f[i+j+(l>>1)]=(1ll*f[i+j]-1ll*mul*tmp%mod+mod)%mod;
				f[i+j]=(1ll*f[i+j]+1ll*mul*tmp%mod)%mod;
				mul=1ll*mul*step%mod;
			}
		}
	}
	if (rev==-1){
		reverse(f+1,f+nh);
		int inv=ksm(nh,mod-2);
		for (int i=0;i<nh;++i) f[i]=1ll*f[i]*inv%mod;
	}
}
int main(){
	scanf("%d%d",&nf,&ng);
	while (nh-1<nf+ng) nh<<=1;
	for (int i=0;i<=nf;++i) scanf("%d",&f[i]);
	for (int i=0;i<=ng;++i) scanf("%d",&g[i]) ;
	r[0]=0; 
	for (int i=1;i<nh;++i) r[i]=(r[i>>1]>>1)|(i&1?(nh>>1):0);
	FFT(f,1);
	FFT(g,1);
	for (int i=0;i<nh;++i) h[i]=1ll*f[i]*g[i]%mod;
	FFT(h,-1);
	for (int i=0;i<=nf+ng;++i) printf("%lld ",h[i]);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值