-
目录
推荐系统概述
-
推荐系统的目的
-
用户
-
网站
-
内容
-
-
推荐系统的基本思想
- 利用用户和物品的特征信息
- 利用 用户喜欢过的物品
- 利用和用户相似的其他用户
-
推荐系统的数据分析
- 要推荐物品或内容的元数据
- 系统用户的基本信息
- 用户的行为信息(显式的用户反馈:评分或评论、隐式的用户反馈:购买或查看
-
推荐系统的分类
-
根据实时性分类
- 离线推荐
- 实时推荐
-
根据推荐是否个性化分类
- 基于统计的推荐
- 个性化推荐
-
根据推荐原则分类
- 基于相似度分类
- 基于知识的推荐
- 基于模型的推荐
-
根据数据源分类
- 基于人口统计学的分类
- 基于内容的分类
- 基于协同过滤的分类
-
-
推荐算法简介
-
基于人口统计学的推荐
-
基于内容的推荐
-
基于协同过滤的推荐
-
基于协同过滤的推荐算法
- 协同过滤(CF)
- 基于近邻的协同过滤
- 基于用户(User-CF)
- 基于物品(Item-CF)
- 基于模型的协同过滤
- 奇异值分解(SVD)
- 潜在语义分析(LSA)
- 支撑向量机(SVM)
-
协同过滤推荐方法
- 基于内容(CB)主要利用的是用户评价过的物品的内容特征,而CF方法还可以利用其他用户评分过的物品内容
- CF可以解决CB的一些局限
- 物品内容不完全或难以获得时,依然可以通过其他用户的反馈给出推荐
- CF基于用户之间对物品的评价质量,避免了CB仅依赖内容可能造成的对物品质量判断干扰
- CF推荐不受内容限制,只要其他类似用户给出了对不同物品的兴趣,CF就可以给用户推荐出内容差异很大的物品(但又某种内在联系)
- 分为两类:基于近邻和基于模型
-
基于用户的协同过滤
-
-
基于物品的协同过滤
-
混合推荐
-
推荐系统评测
-
推荐系统实验方法
- 离线实验
- 通过体制系统获得用户行为数据,并按照一定格式生成一个标准的数据集
- 将数据集按照一定的规则分成训练集和测试集
- 在训练集上训练用户兴趣模型,在测试集上进行预测
- 通过事先定义的离线指标测评算法在测试集上的预测结果
- 用户调查
- 用户调查要有一些真实用户,让他们在需要测试的推荐系统上完成一些任务;我们呢需要记录他们的行为,并让他们回答一些问题;最后进行分析
- 在线实验
- AB测试
- 离线实验
-
推荐系统评测指标
-
推荐按准确度测评
-
评分测评
- 打分功能,如果知道用户对物品的历史评分,就可以从中学习一个兴趣模型,从而预测用户对新物品的评分
- 评分预测的准确度一般用均方根误差(RMSE)或平均绝对误差(MAE)计算
- Top-N推荐
- 给用户一个个性化的推荐列表
- Top-N推荐的预测准确率一般用精确率和召回率来度量
-