推荐系统简介

  • 推荐系统的目的

    • 用户

    • 网站

    • 内容

  • 推荐系统的基本思想

    • 利用用户和物品的特征信息
    • 利用  用户喜欢过的物品
    • 利用和用户相似的其他用户
  • 推荐系统的数据分析

  • 要推荐物品或内容的元数据
  • 系统用户的基本信息
  • 用户的行为信息(显式的用户反馈:评分或评论、隐式的用户反馈:购买或查看
  • 推荐系统的分类

    • 根据实时性分类

      • 离线推荐
      • 实时推荐
    • 根据推荐是否个性化分类

      • 基于统计的推荐
      • 个性化推荐
    • 根据推荐原则分类

      • 基于相似度分类
      • 基于知识的推荐
      • 基于模型的推荐
    • 根据数据源分类

      • 基于人口统计学的分类
      • 基于内容的分类
      • 基于协同过滤的分类
  • 推荐算法简介

  • 基于人口统计学的推荐

  • 基于内容的推荐

  • 基于协同过滤的推荐

    • 基于协同过滤的推荐算法

      • 协同过滤(CF)
      • 基于近邻的协同过滤
        • 基于用户(User-CF)
        • 基于物品(Item-CF)
      • 基于模型的协同过滤
        • 奇异值分解(SVD)
        • 潜在语义分析(LSA)
        • 支撑向量机(SVM)
    • 协同过滤推荐方法

      • 基于内容(CB)主要利用的是用户评价过的物品的内容特征,而CF方法还可以利用其他用户评分过的物品内容
      • CF可以解决CB的一些局限
        • 物品内容不完全或难以获得时,依然可以通过其他用户的反馈给出推荐
        • CF基于用户之间对物品的评价质量,避免了CB仅依赖内容可能造成的对物品质量判断干扰
        • CF推荐不受内容限制,只要其他类似用户给出了对不同物品的兴趣,CF就可以给用户推荐出内容差异很大的物品(但又某种内在联系)
      • 分为两类:基于近邻和基于模型
    • 基于用户的协同过滤

  • 基于物品的协同过滤

  • 混合推荐

  • 推荐系统评测

  • 推荐系统实验方法

    • 离线实验
      • 通过体制系统获得用户行为数据,并按照一定格式生成一个标准的数据集
      • 将数据集按照一定的规则分成训练集和测试集
      • 在训练集上训练用户兴趣模型,在测试集上进行预测
      • 通过事先定义的离线指标测评算法在测试集上的预测结果
    • 用户调查
      • 用户调查要有一些真实用户,让他们在需要测试的推荐系统上完成一些任务;我们呢需要记录他们的行为,并让他们回答一些问题;最后进行分析
    • 在线实验
      • AB测试
  • 推荐系统评测指标

  • 推荐按准确度测评

    • 评分测评

      • 打分功能,如果知道用户对物品的历史评分,就可以从中学习一个兴趣模型,从而预测用户对新物品的评分
      • 评分预测的准确度一般用均方根误差(RMSE)或平均绝对误差(MAE)计算
      • Top-N推荐
        • 给用户一个个性化的推荐列表
        • Top-N推荐的预测准确率一般用精确率和召回率来度量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值