线性因子模型

原文出处:Linear Factor Models


一般线性因子模型(A Generic Linear Factor Model)

公式

线性因子模型(Linear Factor Model),反映了资产(asset,即股票、债券、共同基金或其他资产)收益与有限数量的影响因子的关系,可以用一个线性方程描述。一般地,写为:

ri=bi1f1+bi2f2++bimfm+ei

其中:

  • ri= 资产i的收益(the return on asset i)
  • bi1= 因子1单位变化带来的资产i的收益变化
  • f1= 因子1的值
  • bi2= 因子2单位变化带来的资产i的收益变化
  • f2= 因子2的值
  • =bijfj  (j=3,,m1)
  • bim= 因子m单位变化带来的资产i的收益变化
  • fm= 因子m的值
  • m= 因子数量
  • ei=m个因子无关的资产i的收益部分,即“残差”

需要说明的是,有时会为了区分那些在事实确定前假设已知的变量(即模型参数)与事实确定前未知的变量(即随机变量),可能会写成如下形式:

ri^=bi1f1^+bi2f2^++bimfm^+ei^

其中,变量上方的的^表示该变量的值事先是不知道的,即不确定统计变量。这样,由于我们不知道因子(f1^,f2^,,fm^)的值,从而无法知道资产收益ri^,当然也不知道残差ei^。相反我们知道收益在每个因子上的敏感性(bi1,bi2,,bim),它们是确定的,不受不确定性约束。换种说法,它们是模型的参数。

关键假设

因子模型等式看似描述了资产收益与枚举因子间的显著关系,但事实并非这样。比如,你可以选择任意集合{bij}{fj},然后定义残差为:

ei^=ri^(bi1f1^+bi2f2^++bimfm^)

方程依然精确成立,但没有任何经济学意义,为使其具有经济学意义,需作两个假设

  • 第一个假设:假设收益残差ei^与各因子无关,即:

corr(ei^,fj^)=0, j=1,2,,m

然而,它并非看起来那么严格,考虑一种情况:残差与因子1相关,通过适当调整参数bi1,残差和因子间的相关性能够接近0,这对其它因子也是一样的。事实上,利用历史数据,采用多元线性回归可以与每个因素都不相关的参数解集bij。为什么?因为标准线性回归就是求最小化残差的方差(这里ei)的系数解集(这里bij)。由于改变一个或多个参数bij的值,都将减小残差的方差,这将确保残差与每个独立变量(这里fj)间是不相关。

这样,“残差与各因子不相关”这个假设用起来很方便,但没有为线性因子模型带来更多性能。

  • 线性因子模型的关键假设是:一个资产收益的残差与任何其它资产的残差是不相关的。即不同资产收益的残差不相关。

corr(ei^,ej^)=0, (i,j=1,2,,m, ij

这意味着,资产总收益间的相关性的唯一来源,就是风险因素及各因素间的协方差。资产收益的残差部分被假定与任何其他资产无关,因此对该资产完全确定。换句话说,与残差收益相关的风险,问题资产中的特殊性。

这种假设使得线性因子模型更有意义,在这个意义上,它排除了许多可能的收入组合。但这是有代价的。模型越限制越多,它可能与现实就越不一致。为此,分析师通过包括足够数量的因素,并尝试关注最为重要的,来试图捕捉资产收益间相关性的最重要来源,这也是其职责。这是说,在构建任何模型时,节俭是一种美德,目标就是包含“信号”,避免“噪声”。

术语(Terminology)

分解收益(Decomposing Returns)

因子模型的矩阵表示(Matrix Representation of Factor Models)

我的一点浅显的理解

线性因子模型其实就是一个线性方程,与其它线性模型也有着一些联系,比如考虑线性方程:

y=a1x1+a2x2++amxm

其中x是自变量,也就是变化的因素,即因子;y是因变量,因因子x的改变而改变;而将上述等式看作一个线性模型,系数a就是模型参数,对应着线性因子模型中的参数b(factors exposure)。

发布了84 篇原创文章 · 获赞 130 · 访问量 41万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览