EM算法

1.与极大似然估计的关系:
极大似然估计:已知结果和概率分布估计概率分布的参数 θ θ
EM算法:已知结果估计概率分布的参数 θ θ ,EM算法是含有隐变量的概率模型参数的极大似然估计法。

  一般的用Y表示观测随机变量的数据,Z表示隐随机变量的数据。Y和Z连在一起称为完全数据,观测数据Y称为不完全数据。
  假设给定观测数据Y,其概率分布是P(Y | θ θ ), 其中 θ θ 为要估计的模型参数,那么Y的似然函数为L( θ θ ) = log P(Y | θ θ ),假设Y和Z的联合概率分布是P(Y,Z | θ θ ),那么完全数据的对数似然函数是log P(Y,Z | θ θ )。

例子:http://blog.csdn.net/u011300443/article/details/46763743

2. EM算法思想:

(1)选择参数的初始值 θ(0) θ ( 0 ) ,重复以下步骤
(2)E步:记 θ(i) θ ( i ) 为第i次迭代参数 θ θ 的估计值,计算第i+1次的隐形变量的期望:
这里写图片描述
这是完全数据对数似然函数log P(Y,Z | θ θ )关于在给定个观测数据Y和当前参数 θ(i) θ ( i ) 下对未观测数据Z的条件概率分布P(Y,Z | θ(i) θ ( i ) )的期望。

(3)M步:求使似然函数最大化的参数 θ(i+1) θ ( i + 1 )
这里写图片描述

(4)重复(2)(3)直到收敛。
EM算大与初始值的选择有关,选择不同的初始值可能会有不同的参数估计值。

3. EM算法的推导:
  对于一个含有隐形变量的概率模型,我们的目标是极大化不完全数据Y对于参数 θ θ 的对数似然函数,即极大化:
这里写图片描述
我们想找到合适的 θ θ 和z使得L( θ θ ) 最大,但是以往的分别对 θ θ 和z求偏导并使其为0的方法并不适用,因为目标函数里有关于z的概率密度和,是关于z的和的对数。
  EM算法是通过迭代逐步近似极大化L( θ θ ),我们希望第i+1次的估计值比第i次的估计值使得L( θ θ )增加,并逐步达到极大值。考虑两者之差:
这里写图片描述
其中利用Jensen不等式( log(ni=1xin)ni=1log(xi)n l o g ( ∑ i = 1 n x i n ) ≥ ∑ i = 1 n l o g ( x i ) n )进行了转换.
这里写图片描述
即为L( θ θ )的一个下界。任何使得 B(θ,θ(i)) B ( θ , θ ( i ) ) 增大的 θ θ ,也使得L( θ θ )增大,所以问题等价为选择 θ(i+1)) θ ( i + 1 ) ) 使得 B(θ,θ(i)) B ( θ , θ ( i ) ) 极大。
这里写图片描述
上式等价于EM算法的一次迭代。EM算法是不断求解下界的极大化来逼近求解对数似然函数的极大化。

4. EM算法直观解释:
这里写图片描述
图中上方实线为L( θ θ ),下方细实线为 B(θ,θ(i)) B ( θ , θ ( i ) ) ,在 θ(i) θ ( i ) 处两个函数相等,EM算法计算的下一个点 θ(i+1) θ ( i + 1 ) 使得 B(θ,θ(i)) B ( θ , θ ( i ) ) 极大化,函数 B(θ,θ(i)) B ( θ , θ ( i ) ) 的增加,保证对数似然函数L( θ θ )在每次迭代中也是增加的,但是EM算法不能保证全局最优值。

学习参考:
http://blog.csdn.net/zouxy09/article/details/8537620

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值