自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(54)
  • 收藏
  • 关注

原创 深度学习多种模型评估指标介绍 - 附sklearn实现

1、准确率accuracy预测正确的样本数/总样本数,但accuracy对于样本数据不均衡的问题来说不具有说服力,当样本不均衡时,准确率即是很高也不代表分类器效果好#准确率from sklearn.metrics import accuracy_scorey_true = [2, 1, 0, 1, 2, 0]y_pred = [2, 0, 0, 1, 2, 1]accuracy_s...

2019-03-26 20:51:56 1792

原创 fastText原理和文本分类实战,看这一篇就够了

fastText原理篇一、fastText简介fastText是一个快速文本分类算法,与基于神经网络的分类算法相比有两大优点:1、fastText在保持高精度的情况下加快了训练速度和测试速度2、fastText不需要预训练好的词向量,fastText会自己训练词向量3、fastText两个重要的优化:Hierarchical Softmax、N-gram二、fastText模型架构...

2019-03-19 11:19:48 76029 17

原创 【收藏】十个深度学习和机器学习问题速问速答

一、谈如何划分训练集、验证集和测试集高质量验证集、测试集、训练集对于神经网络至关重要,验证集目的:在多个算法中选出最有效的算法,测试集目的:正确评估分类器的性能那如何划分训练集、验证集、测试集,在小数据量时,例如1000,10000时划分标准可参考(70%,30%)(无验证集)、(60%,20%,20%),当百万数据及以上时,如100万,我们可能只需要10000个作为验证集,10000作为测...

2018-12-17 21:47:46 696

原创 机器学习岗面试准备提纲笔记

本文仅仅是机器学习岗位自己面试前的准备提纲,可供参考,后续有待补充,不详细谈各个问题的具体解法,仅限于提纲一、数据结构算法面试中算法题是少不了的,这体现一个程序员的基本功,因此平时要多多在Leetcode、牛客网上刷题,所以在面试前倒也没办法突击准备,注重平时多积累,说道最简单且容易忽视的算法也就是排序算法,因此面试前也是可以临时抱佛脚准备一下排序算法:简单排序算法:冒泡排序、选择排序、...

2018-11-30 23:35:39 601

原创 降维算法原理篇:主成分分析PCA、奇异值分解SVD、因子分析法FA、独立成分分析ICA等原理详推

一、前话在降维算法中,我们经常要用到协方差的概念,下面给出协方差,相关系数等概念解释协方差描述两个变量的相关程度,同向变化时协方差为正,反向变化时协方差为负,而相关系数也是描述两个变量的相关程度,只是相关系数对结果相当于做了归一化处理,协方差的值范围是负无穷到正无穷,而相关系数值范围是在负一到正一之间,详细描述参考:如何通俗易懂地解释「协方差」与「相关系数」的概念数据降维作用1、减少存储...

2018-11-26 19:10:32 2514

原创 机器学习算法篇:谈Softmax激活函数以及Softmax回归和Logistic回归关系

一、神经网络中的Softmax函数1、Softmax函数定义Softmax函数常在神经网络输出层充当激活函数,将输出层的值通过激活函数映射到0-1区间,将神经元输出构造成概率分布,用于多分类问题中,Softmax激活函数映射值越大,则真实类别可能性越大,下面先给出Softmax函数计算公式:aj= ezj∑kezka_{j} = \ \frac{e^{z_{j}}}{\sum...

2018-11-05 21:23:33 2265

原创 机器学习概念篇:一文详解凸函数和凸优化,干货满满

一、几何体的向量表示在介绍凸集等概念之前,首先介绍一下空间几何体的向量表示,下面在定义凸集概念时便用到了线段的线段表示。先通过一个例子来认识一下如何使用向量表示线段已知二维平面上两定点A(5, 1)、B(2, 3),给出线段AB的方程表示如下:{x1=θ∗5+(1−θ)∗2x2=θ∗1+(1−θ)∗3   &

2018-10-29 19:44:28 19868 14

原创 机器学习算法篇:从为什么梯度方向是函数变化率最快方向详谈梯度下降算法

梯度下降法是机器学习中常用的参数优化算法,使用起来也是十分方便!很多人都知道梯度方向便是函数值变化最快的方向,但是有认真的思考过梯度方向是什么方向,梯度方向为什么是函数值变化最快的方向这些问题嘛,本文便以解释为什么梯度方向是函数值变化最快方向为引子引出对梯度下降算法的研究,后面也将通过线性回归详细介绍梯度下降算法以及算法调优方式及其变种一、证明梯度方向是函数变化率最快方向1、由导数看...

2018-10-11 23:31:59 5712

原创 机器学习算法篇:最大似然估计证明最小二乘法合理性

最小二乘法的核心思想是保证所有数据误差的平方和最小,但我们是否认真思考过为什么数据误差平方和最小便会最优,本文便从最大似然估计算法的角度来推导最小二乘法的思想合理性,下面我们先了解一下最大似然估计和最小二乘法,最后我们通过中心极限定理克制的误差ε服从正态分布来引出最大似然估计和最小二乘法的关系一、最大似然估计先从贝叶斯公式说起:P(W∣X)= P(X∣W)P(W)P(X)...

2018-10-10 20:58:26 1876

原创 机器学习概念篇:监督学习、过拟合,正则化,泛化能力等概念以及防止过拟合方法总结

上个系列【数字图像处理】还将继续更新,最近由于用到机器学习算法,因此将之前学习到的机器学习知识进行总结,打算接下来陆续出一个【机器学习系列】,供查阅使用!本篇便从机器学习基础概念说起!一、解释监督学习,非监督学习,半监督学习的区别监督学习、非监督学习和半监督学习区别就是训练数据是否拥有标签信息 1、监督学习:给出了数据及数据的标准答案来训练模型,Regression回归问题、clas...

2018-10-09 22:11:06 2134

原创 logistic回归原理解析及Python应用实例

logistic回归,又叫对数几率回归(从后文中便可此名由来)。首先给大家强调一点,这是一个分类模型而不是一个回归模型!下文开始将从不同方面讲解logistic回归的原理,随后分别使用梯度上升算法和随机梯度上升算法将logistic回归算法应用到实例中。一、logistic回归和线性回归的关系想必大家也早有疑惑,既然logistic回归名字中都带有“回归”二者,难道和回归模型一点关系都没有!没错,二

2017-03-20 17:59:00 31379 12

原创 支持向量机(SVM)必备知识(KKT、slater、对偶)

SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸优化问题、拉格朗日乘子法、对偶问题,slater条件、KKT条件还有复杂的SMO算法!相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础。一、凸集和凸函数在讲解凸优化问题之前我们先来了解一

2017-03-16 16:50:00 17197 6

原创 贝叶斯估计和极大似然估计到底有何区别

在开始接触最大似然估计和贝叶斯估计时,大家都会有个疑问:最大似然估计和贝叶斯估计二者很相似,到底有何区别?本文便来说说二者的不同之处以及推导二者使用时的数学模型!预热知识必知如何求类条件概率密度: 我们知道贝叶斯决策中关键便在于知道后验概率,那么问题便集中在求解类条件概率密度!那么如何求呢?答案便是:将类条件概率密度进行参数化。最大似然估计和贝叶斯估计参数估计: 鉴于类条件概率密度难求,我们将其

2017-03-12 21:28:00 30071 7

原创 服务器上Jupyter notebook环境搭建

可以在服务器上安装jupyter notebook进行开发工作,这样便可以摆脱服务器的vim环境在jupyter notebook上进行开发步骤如下:1、pip install jupyter2、jupyter notebook –generate-config3、服务器上打开python交互式,输入from notebook.auth import passwdpasswd()...

2019-05-29 19:45:59 3337

原创 Pycharm连接远程服务器环境搭建

在服务器上开发时服务器上的vim环境用起来那时相当不顺手,因此一般我们都会在本地的编译环境进行代码调试,这就存在服务器和本地代码同步的问题,如果每次在本地开发完都需要手动向服务器上传代码也是没谁了,麻烦!因此本文介绍一种方式,用Pycharm连接远程服务器,实现代码本地修改,自动同步服务器。1、Pycharm安装Pycharm下载网址:https://www.jetbrains.com/p...

2019-05-29 19:37:54 4958

原创 机器学习中优化相关理论基础汇总

在阐述机器学习中优化所需相关理论基础前,既然是谈机器学习算法,我们先了解一下机器学习中算法分类:1、监督学习:训练数据每个实例都带有label2、非监督学习:训练数据没有label3、强化学习:与监督学习和非监督学习并列的第三类机器学习算法4、弱监督学习:分为三种 不完全监督、不确切监督、不准确监督5、半监督学习:由于标注数据困难等原因,只有部分数据含有label6、多示例学习:每个...

2019-04-30 13:14:53 869

转载 2019年 AI 顶会速递

文章转载自博文:https://blog.csdn.net/Sophia_11/article/details/84713424 ,收集了2019年AI顶会时间表和官网,方便学术人员关注查看!收集到量子位整理的2019 AI顶会时间表,包含会议举办的时间、地点、投稿截止日期、官方网址/社交媒体地址,还有H5指数(谷歌学术的期刊会议评判标准,即过去5年内有至多h篇论文被引用了至少h次)。在这...

2019-03-27 16:36:09 1314

原创 程序员的浪漫:晨起给女友定时发送天气预报,睡前给女友定时讲故事

情侣之间除了平日一起探究有趣的事情,总是少不了就是 “日常早晚请安”1、请安情景一男: 今日阳光明媚,多云转晴,小懒猪快起床啦女:早起啦,话说你是不是还在被窝里呢男:嘿嘿2、请安情景二女:哎呀,挺晚了呢,早点休息吧,晚安男:晚安女:么么哒一分钟后。。。女:快说,你是不是还在扣手机呢男:嘿嘿另外你的小可爱有没有要求你每晚给她讲故事,无奈故事库那是相当匮乏!那可不可以让聊天更...

2019-03-22 10:17:28 2154 3

原创 conda安装tensorflow-GPU出现CondaHTTPError: HTTP 000 CONNECTION FAILED for url错误

linux上在使用conda安装一些软件包的时候,经常会碰到CondaHTTPError错误,主要原因便是网站限速,下载速度过慢,网上针对这种错误给出的方案基本都是换源,使用一些国内镜像源,如换成清华镜像或USTC镜像,但有时候换源之后还会下载速度慢导致CondaHTTPError,下面给出先给出一定可以成功直接下载wheel包并进行安装方式,再说明一下换源如何进行操作,以conda安装tenso...

2019-02-24 14:27:03 8966 2

转载 CSDN-markdown编辑器语法说明

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Ma...

2019-02-24 13:30:24 102

原创 干货 | 一文弄懂机器学习中偏差、方差

一、理解偏差、方差偏差:描述的是预测值的期望与真实值之间的差距,偏差越大,越偏离真实数据方差:预测值的方差,描述的是预测值的变化范围,离散程度,也就是离预测值期望值的距离,方差越大,数据的分布越分散概念上理解比较抽象,下面我们通过下面一个例子来理解一下偏差和方差如上图,我们假设一次射击就是一个机器学习模型对一个样本进行预测,射中红色靶心位置代表预测准确,偏离靶心越远代表预测误差越大。偏...

2018-12-10 22:39:29 915

原创 【数字图像处理系列五】图像滤波之空间滤波:图像平滑降噪和图像锐化

· 本系列python版本:python3.5.4 · 本系列opencv-python版本:opencv-python3.4.2.17· 本系列使用的开发环境是jupyter notebook,是一个python的交互式开发环境,测试十分方便,并集成了vim操作,安装教程可参考:windows上jupyter notebook主题背景、字体及扩展插件配置(集成vim环境)在【数...

2018-09-26 19:29:29 6260 3

原创 【数字图像处理系列四】图像数据集增强方式总结和实现

本系列python版本:python2.7.15本系列opencv-python版本:opencv-python3.4.2.17本系列使用的开发环境是jupyter notebook,是一个python的交互式开发环境,测试十分方便,并集成了vim操作,安装教程可参考:windows上jupyter notebook主题背景、字体及扩展插件配置(集成vim环境)前几篇分享多以数字图像...

2018-09-23 10:19:50 10061 5

原创 【数字图像处理系列三】图像增强:线性、 分段线性、 对数、 反对数、 幂律(伽马)变换、直方图均衡

本系列python版本:python3.5.4 本系列opencv-python版本:opencv-python3.4.2.17本系列使用的开发环境是jupyter notebook,是一个python的交互式开发环境,测试十分方便,并集成了vim操作,安装教程可参考:windows上jupyter notebook主题背景、字体及扩展插件配置(集成vim环境)上文【数字图像处理系列二...

2018-09-20 21:22:30 11430 2

原创 【数字图像处理系列二】基本概念:亮度、对比度、饱和度、锐化、分辨率

本系列python版本:python3.5.4 本系列opencv-python版本:opencv-python3.4.2.17本系列使用的开发环境是jupyter notebook,是一个python的交互式开发环境,测试十分方便,并集成了vim操作,安装教程可参考:windows上jupyter notebook主题背景、字体及扩展插件配置(集成vim环境)在上文【数字图...

2018-09-18 13:43:49 30512 4

原创 【数字图像处理系列一】opencv-python快速入门篇

本系列python版本:python3.5.4本系列opencv-python版本:opencv-python3.4.2.17本系列使用的开发环境是jupyter notebook,是一个python的交互式开发环境,测试十分方便,并集成了vim操作,安装教程可参考:windows上jupyter notebook主题背景、字体及扩展插件配置(集成vim环境)本文我们将一起学习使用ope...

2018-09-17 22:20:24 7688 2

原创 python数据模型和各种实用小技巧,保证让你更PYTHONIC

前话: python简单易用,库多就是这么强大,笔者也长期使用过java、c、c++等语言,嗯不多说,最后选择了python! 但其实很多python程序猿都是其他语言转过来的,而且python兼容性也很高,所以比如java在写python的时候总能感觉到一股浓浓的java味,一个字:尬,两个字:尴尬!因此本文就是简单的通过介绍python数据模型和各种实用的小技巧来体现一下:PYTHONIC ,...

2018-08-31 17:35:44 967

原创 BAT[阿里、百度、腾讯]等互联网公司数据结构面试题(一) python分析实现

一、前话 互联网公司面试基本就是: 首先自我介绍,然后开始盘问你简历中做过的项目,最后都会出题现场写代码,考察一个程序员最基本的素质。因此对于数据结构的掌握尤为重要,很多人都会被这个环节给刷掉,要么是临场紧张写不出来,要么就是没有考虑复杂度问题:代码冗余,耗时耗内存。 本系列便分享一些大型互联网公司的数据结构面试题,提供分析思路并通过python实现! 二、数据结构面试题分析...

2018-08-27 14:48:11 2517

原创 霍夫变换 文本图片倾斜矫正 python实现

一、霍夫变换原理简介霍夫变换主要是利用图片所在的空间和霍夫空间之间的变换,将图片所在的直角坐标系中具有形状的曲线或直线映射到霍夫空间的一个点上形成峰值,从而将检测任意形状的问题转化成了计算峰值的问题。即在图片所在的直角坐标系的一个直线,转换到霍夫空间便成了一点,并且是由多条直线相交而成,我们统计的峰值也就是该相交点的橡胶线的条数这么难以理解,下面将用霍夫直线检测具体解释一下为什么可以将检测...

2018-08-11 14:17:18 16264 9

原创 冒泡、选择、快速、归并、堆排序算法 python实现

一、冒泡排序核心思想: 通过相邻元素的比较实现排序def bubble_sort(a, length): '''冒泡排序''' for i in range(length-1): for j in range(0, length-1-i): if a[j] > a[j+1]: a[j], a[j+...

2018-08-10 17:34:30 336

原创 Numpy快速入门教程

一、numpy简介[numpy][6] 是一个由多维数组对象和用于处理数组的例程集合组成的库 [numpy][6] 中操作的对象: ndarray对象,即ndarray的N维数组类型,描述相同类型的元素集合,每个元素在内存中使用相同大小的块。二、numpy对象创建方式#首先导入numpy库import numpy as np1、numpy.array()数组函数创建...

2018-08-10 10:13:25 746

原创 windows上jupyter notebook主题背景、字体及扩展插件配置(集成vim环境)

目录目录windows上安装Anaconda (IPython notebook)IPython notebook拓展插件安装IPython notebook主题背景和字体更改windows上安装Anaconda (IPython notebook)Anaconda是一个包与环境的管理器,一个Python发行版,以及一个超过1000多个开源包的集合。它是免...

2018-05-03 20:42:23 11745 2

原创 DFS应用(拓扑排序和强连通分支)

本文将用实例分析DFS搜索算法的两大应用:1、运用深度优先搜索,对一个有向无回路图DAG进行拓扑排序; 2、运用深度优先搜索,将一个有向图分解为各强连通分支。一、拓扑排序首先拓扑排序是针对有向无回路图来说的,反之,如果图中有回路,就不可能存在这样的线性序列。 Topological-Sort算法可以产生一个有向无回路图G的拓扑序列。1、Topological-Sort算法实现思路:<1>调用DFS

2017-04-12 21:45:31 1457

原创 图的BFS和DFS原理及实例分析(java)

BFS和DFS是图的两种遍历方式,是最简单的图搜索算法。本文将给出给出BFS和DFS的以下几种实现方式: 1、使用队列Queue实现图的BFS遍历 2、递归实现图的DFS遍历 3、使用栈Stack迭代实现图的DFS遍历一、BFS(广度优先搜索算法)BFS算法之所以叫做广度优先搜索,是因为它始终将已发现的顶点和未发现的之间的边界,沿其广度方向向外扩展。亦即,算法首先会发现和s距离为k的所有顶点,

2017-04-06 11:27:06 8279 1

原创 Prim算法实现最小生成树MST(java)

Prim算法是另一种生成图的最小生成树的算法,这里简单说一下Prim算法和Kruskal算法的在实现方面的区别:1、Kruskal算法在生成最小生成树的过程中产生的是森林,Prim算法在执行过程中始终都是一棵树;2、Kruskal和Prim实现上的最大区别是Kruskal不需要搜索每个顶点的邻接节点,而Prim中需要,所以Prim图构建时需要利用邻接链表进行构建,Kruskal不用!上面第二点边提出

2017-04-06 09:25:59 10151 1

原创 Kruskal算法实现最小生成树MST(java)

Kruskal算法用于生成图的最小生成树MST,不多说下面直接进入主题!一、实现Kruskal算法需要会的数据结构知识1、最小堆:包括最小堆的初始化、插入和删除操作 最小堆的作用:每次从边的集合中选出权重最小的边,将其加入到MST中(当然此边当和MST中的元素构成环时不满足)2、等价类(并查集) 并查集的作用:便是判断加入到MST中的边是否会构成环3、EdgeNode类 在Kruskal算法中

2017-04-05 21:54:55 5693

原创 java图的邻接表实现两种方式及实例应用分析

本篇博客来谈一谈图的邻接表实现的两种方式,首先我们明确一点“学会图的邻接表实现的关键点在于“:你所建立的图的邻接表的对象是什么!首先我们看一下《算法导论》中关于图的邻接表的定义:图G=(V,E)的邻接表表示有一个包含 |V| 个列表的数组Adj所组成,其中每个列表对应于V中的一个顶点,对于每一个u∈V,邻接表Adj[u]包含所有满足条件(u,v)∈E的顶点v,亦即,Adj[u]包含图G中所有和顶点u

2017-04-05 20:26:11 13915 9

原创 Sublime Text3使用Package Control 报错There Are No Packages Available For Installation

在使用sublime时,有时候我们希望将代码复制出来后仍然是高亮显示,这样我们便需要安装SublimeHighLight插件,在安装SublimeHighLight插件之前,我们应该先安装Package Control插件!1、Package Control插件作用:能够利用这个插件安装很多Sublime的插件! 2、SublimeHighLight插件作用:能让代码更好地展示其高亮性!我先从网上

2017-03-28 17:29:20 49564 56

原创 python3.x编程模板总结

刚接触Python3版本的小伙伴们,编程时会对于Python中各种数据结构如:array、list、dict、set以及字符串str操作都不太熟悉。同时类似于Python网络编程、文件读取、数据库连接以及协程这些编程模板基本也都是固定的,本文便就这些方面进行总结,希望让大家进行Python3编程时能够更加的便捷,可以直接复制粘贴而不用每次都手敲了,好下面进入正题啦!一、list各种操作1、list和

2017-03-13 12:42:22 2989

原创 “OpenGL.error.NullFunctionError: Attempt to call an undefined function”解决方案

在windows_64下利用命令:pip install pyopengl 安装python的openGL环境。结果运行示例代码出现以下错误: OpenGL.error.NullFunctionError: Attempt to call an undefined function glutInitDisplayMode, check for bool(glutInitDisplayMode) b

2017-03-11 17:02:44 6375 3

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除