9.数据中台 --- 数据服务体系建设

本文深入探讨了数据中台的概念,重点解析如何构建高效的数据服务体系。内容包括数据中台的架构设计、数据服务的实现方式以及如何利用云计算和人工智能技术提升数据服务能力。通过实例说明,阐述了数据中台在企业中的价值和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第9章 数据服务体系建设
	数据服务体系就是把数据变为一种服务能力,通过数据服务让数据参与到业务之中,激活整个数据中台,这也是数据中台的价值所在。


9.1 补全数据应用的后“一公里”
		数据资产只有形成数据服务被业务所使用,才能体现其价值。以往传统做法是根据某个应用产品的需要,独立构建非常多的数据接口与应用产品
	对接,这会形成数据接口的"孤岛",造成大量接口的重复建设,且修改、运维、监控的成本都很大,需要抽象成可管理、可复用、可监控的统一标准
	下的数据服务体系。而通过数据服务便捷的对接业务系统或应用系统,才能将数据资产灵活的使用起来,最终给企业带来各种适配业务场景的数据解决
	方案,从而提升效率。	

	1.定义与定位
		数据服务是对数据进行计算逻辑的封装(过滤查询、多维分析和算法推理等计算逻辑),生成API服务,上层数据应用可以对接数据服务API,让
	数据快速应用到业务场景中。数据服务是数据中台能力的出口。

	2.主要分类
		按照数据与计算逻辑封装方式的不同,数据服务可以分为以下三类:
			1.基础数据服务
				它面向的对象是物理表数据,主要面向的场景包括数据查询、多维分析等,通过自定义sql的方式实现数据中台全域物理表数据的指标
			获取和分析。

			2.标签画像服务
				它面向的对象是标签数据,主要面向的场景包括标签圈人、画像分析等,通过界面配置方式实现数据中台全域标签数据跨计算、存储的
			统一查询分析计算,加快数据应用的开发速度。

			3.算法模型服务
				它面向的对象是算法模型,主要面向的场景包括智能营销、个性化推荐和金融风控等,主要通过界面配置方式将算法模型一键部署为
			在线API,支撑智能应用和业务。

	3.核心价值
		数据服务作为补充数据应用的最后一公里,它的核心价值有以下4点:
			1.确保数据在业务层的全域流通
				数据服务可以对数据中台的全量数据进行封装输出,让中台的数据支撑数据业务,加速数据业务化的流程;数据业务产生的反馈数据可以
			回流到数据中台中,不断优化现有的数据服务,让数据在业务中持续流动起来。

			2.降低数据接口的重复建设
				前端不同的数据应用对数据的需求有些是类似的,通过一次创建、多次授权的方式交付给前端。

			3.保障数据获取的及时性和稳定高效
				通过统一的数据服务,对于不同业务部门给数据中台提的数据需求,中台管理可以进行统一规划和分配,从整体上保证资源和需求的协调。

			4.使能数据能力扩展
				通过统一数据中台,不断扩展数据源、优化数据资产建设、扩展数据服务封装方式,将数据能力进行持续扩展,不断给数据业务和数据
			应用提供更多的数据价值。


9.2 4种常见的数据服务
		数据服务类型是对数据使用场景的抽象提炼,可以根据不同的数据使用场景,抽象出 查询服务、分析服务、检索服务、圈人服务、推荐服务、
	风控服务 等多种数据服务类型。这些最小化的数据服务可以按需组合在一起,构成一个复杂的数据服务体系,并通过交互式界面的封装,形成一个
	数据应用产品。

		数据服务指将数据内容以标准API方式输出以服务不同业务场景需求的能力。

		1.查询服务
			输入特定的查询条件,返回该条件下的数据,以API形式供上层应用调用。

			1.定义
				查询服务通过一个标识(key)查询其所对应的内容,可以附加一些条件过滤选型来满足检索要求。

			2.典型特征
				a)支持配置查询标识
				b)支持配置过滤项
				c)支持查询结果配置

			3.构建过程
				a)数据接入
				b)数据查询
				c)结果规则配置
				d)能力开放

		2.分析服务
			借助分析组件高效的大数据分析能力,对数据进行关联分析,分析结果通过API形式供上层应用调用。

			1.定义
				分析服务通过各种数据统计分析的方法,对数据做任意维度的数据分析挖掘,让数据分析人员快速了解数据集的特点,以支持
			数据化运营、分析决策等场景。常见的如BI工具、数据化运营中的路径分析、漏斗模型等,大部分都是基于这种能力来构建的。

			2.典型特征
				a)支持多数据源接入
				b)高性能即席查询
				c)多维度数据分析
					分析服务除了支持常规的数据分析、上卷下钻、切片切块之外,还应该支持多维的数据分析以及深层次的数据挖掘,发现数据
				背后的关联关系。
				d)灵活对接业务系统

			3.构建过程
				a)数据接入
				b)在线建模
					在线建模的本质就是构建sql语句的过程,把用户要分析的条件变为sql语句来将数据查询出来。在这个过程中,业务通常会
				用2种方式:一种是sql代码编辑器,另外一种是图形化界面。
				c)能力开放

		3.推荐服务
			按约定格式提供历史日志行为数据和实时访问数据,推荐模型就会生成相应的推荐API,从而为上层应用提供推荐服务。

			1.定义
				即所谓的千人千面,对不同的人、物的行为进行数据挖掘,构建每个人与物之间的关系程度,来推荐人、物以满足用户的兴趣偏好,
			以提升用户对业务的粘性。

			2.典型特征
				a)支持不同行业的推荐
				b)支持不同场景的推荐
				c)支持推荐效果优化

			3.构建过程
				a)选择行业和场景模板
				b)原始数据接入
				c)参数配置
				d)能力开放
				e)数据回流

		4.圈人服务
			从全量用户数据中,基于标签组合筛选符合指定条件的人群,并以API形式对接上层应用系统。

			1.定义
				各行业都会涉及广告营销场景,而如何找到对的人推送广告就成了大数据场景要解决的问题。圈人服务应用而生,通过提供人群圈选
			服务,帮助服务使用者从全量用户数据中基于标签组合筛选出符合特定特征的人群,并以API的形式对接上层的营销系统,从而实现广告
			的精准触达,最终达到老客召回、休眠用户激活等运营目的。

			2.典型特征
				a)支持人群圈选
					圈人服务的核心在于人群圈选,通过sql代码或标签取值组合等多种方式,实现人群查找,帮用户找对人群。
				b)支持人群计量
					需要考虑人群量是否符合预期,因为预算有限,不可能无限量或者不计成本的对人群进行营销。因此在通过条件圈选后,系统需要
				快速的计算出符合条件的人群量。如果多余预期,则建议继续追加条件圈选更精准的人群;如果数量少于预期,则建议放宽条件,或者
				继续圈选其他合适的人群。
				c)支持多渠道对接
					人
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值