一个“散点均匀分布”问题的求解

原文:

http://www.lifelaf.com/blog/?p=306

在最近的开发过程中遇到一个算法问题,描述如下:

问题:有从左到右依次排列的格子m个,同时有小球n个(m>n),如何将小球放入格子中使得小球分布近似均匀?(每个格子最多放置一个小球)。比如,格子有197个,而小球有74个,如何分配小球?

分析:如果格子数m可以整除小球数n,那么问题很简单,每隔 m/n – 1 个格子放置一个小球即可。如果m无法整除n,那么问题就麻烦一点。比如,在m=197, n=74的情况下,m/n=2.66…,也就是说需要每隔1个或者2个格子放置一个小球。那么,如何确定每一个小球的放置呢?

解法:在与同事进行讨论后发现,可以用四舍五入的方法决定具体每一个小球的位置。还是以m=197, n=74为例:

  1. 74/197=0.37…,因此第1个格子中应该有0.37…个小球,0.37…四舍五入取整为0,所以第一个格子中小球数为0。小球计数变量i=0。
  2. (74/197) * 2 = 0.75…,因此前2个格子中总共应该有0.75…个小球,0.75…四舍五入取整为1,所以第二个格子中小球数为1-i=1。小球计数变量i=1。
  3. (74/197) * x = k,因此前x个格子中总共应该有k个小球。将k四舍五入后减去当前i变量的值,就是第x个格子中小球的数目。在计算完成后需要对变量i进行更新。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 一维热方程可以表示为: $$ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} $$ 其中 $u(x, t)$ 是热的分布,$\alpha$ 是热扩散系数。为了求解这个方程,我们可以采用紧差分格式,将时间和空间都离散化,得到: $$ \frac{U_{i, j+1}-U_{i,j}}{\Delta t} = \alpha \frac{U_{i+1,j}-2U_{i,j}+U_{i-1,j}}{\Delta x^2} $$ 其中 $U_{i,j}$ 表示在时间 $t_j$ 和空间 $x_i$ 处的温度值,$\Delta t$ 和 $\Delta x$ 分别是时间和空间的步长。将上式整理可得: $$ U_{i,j+1}=U_{i,j}+\frac{\alpha\Delta t}{\Delta x^2}(U_{i+1,j}-2U_{i,j}+U_{i-1,j}) $$ 这个式子描述了每个时间步长中每个空间的温度如何更新。初始条件 $U_{i,0}$ 可以由给定的初始温度分布确定。通过不断迭代上述式子,可以求解出整个时间和空间范围内的温度分布。 ### 回答2: 一维热方程是描述物质内部温度分布随时间变化的方程。采用紧差分格式求解一维热方程是一种数值解法,在空间和时间上进行离散化,然后通过迭代逐步逼近真实解。 首先,我们将时间和空间都离散化,采用均匀网格。将时间区间分为若干个小时间步长,空间区间分为若干个小空间步长。 然后,使用中心差分公式来近似一维热方程的导数项。在时间上,使用前后两个时间步长的温度值做差分;在空间上,使用前后两个空间步长的温度值做差分。通过这样的差分近似,我们可以得到一个时间层次和空间层次上各的差分方程。 接下来,我们进行迭代计算。根据差分方程,我们可以从已知的初始条件出发,逐步计算出时间和空间上各的温度值。由于相邻时间步长和空间步长之间的差分近似,所以需要进行多次迭代以逼近真实解。 最后,当达到指定的迭代次数或误差范围时,我们可以得到数值解。这个数值解近似了一维热方程的真实解,并且可以在不同时间和空间上查看温度的分布。需要注意的是,差分格式求解一维热方程的精度会受到网格大小的影响,因此需要合理择时间和空间步长,以获得较为准确的结果。 总之,采用紧差分格式求解一维热方程是一种数值解法,通过差分近似和迭代计算来逼近真实解,从而得到温度分布随时间变化的数值解。 ### 回答3: 一维热方程描述了物体在时间和空间中的温度分布,并由热传导方程给出。为了求解这个方程,可以采用紧差分格式。紧差分格式是一种数值解法,将热方程中的导数项用有限差分逼近来近似表示。 在一维热方程中,我们可以将空间离散化为若干离散点,时间离散化为若干时间步长。假设离散点的间距为Δx,时间步长为Δt,在紧差分格式中,我们可以使用中心差分来逼近导数项。 对于一维热方程中的时间导数,我们可以使用前向差分或后向差分来近似表示。例如,我们可以使用前向差分将时间导数近似为(T_i,j+1 - T_i,j)/Δt,其中T_i,j表示离散点i在时间步骤j的温度。 对于一维热方程中的空间导数,我们可以使用中心差分来近似表示。例如,我们可以使用中心差分将空间导数近似为(T_i+1,j - 2T_i,j + T_i-1,j)/(Δx^2),其中T_i+1,j表示离散点i+1在时间步骤j的温度,T_i-1,j表示离散点i-1在时间步骤j的温度。 通过将这两个逼近项代入一维热方程,并进行代数化简,可以得到一个递推公式来求解散点各个时间步长上的温度值。在求解过程中,我们需要使用初始条件和边界条件来确定递推公式的初始值和边界值。 通过使用紧差分格式,我们可以在计算机上进行数值求解,得到一维热方程的近似解。这种求解方法可以在少量的计算时间内得到结果,并且在合理的离散化条件下,可以获得较高的精度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值