- 博客(104)
- 收藏
- 关注
原创 【科技论文写作】如何撰写高质量的科技论文摘要:框架与注意事项
在科技论文中,摘要(Abstract)是至关重要的部分,因为它是读者了解论文内容的第一窗口。
2024-09-06 10:52:16 856
原创 【文件管理】创建和输出文件树结构的Python脚本
本博客将向你介绍如何使用Python来创建一个目录和文件树视图,并提供选项将这个视图保存到文本文件中。
2024-06-20 14:37:28 1094
原创 【windows系统】我们无法创建新的分区,也找不到现有的分区
遇到了“无法创建新的分区,也找不到现有的分区”的问题,经过一些排查后,我们发现问题出在磁盘分区表上。
2024-05-07 15:43:01 8876
原创 常见概率分布-8-贝塔分布(Beta distribution)
贝塔分布是一种连续概率分布,广泛应用于表示在固定区间(通常是[0,1])内的随机变量的分布,特别适合于模型化参数的先验分布和概率的不确定性。
2024-05-01 09:47:37 6584
原创 常见概率分布-7-拉普拉斯分布(Laplace distribution)
拉普拉斯分布,也称为双指数分布,是一种连续概率分布,由其双尖的概率密度特征所区分。
2024-04-22 16:35:39 4253
原创 常见概率分布-5-高斯分布(Gaussian distribution)
高斯分布是一个连续概率分布,它的概率密度函数以对称的钟形曲线(即著名的“正态曲线”)为特征。
2024-04-22 16:19:35 2803
原创 常见概率分布-3-二项分布(Binomial distribution)
二项分布是一种离散概率分布,用于描述在固定次数的独立同分布的伯努利试验中成功的次数。
2024-04-22 15:55:35 2135
原创 常见概率分布-2-范畴分布(Multinoulli Distribution)
范畴分布,或称为Multinoulli分布,是一种离散概率分布,用于描述一个试验结果只有多个互斥类别中的一个的情形。
2024-04-22 15:46:39 1353
原创 常见概率分布-1-伯努利分布(Bernoulli distribution)
伯努利分布,通常称为二点分布或0-1分布,是一种离散概率分布。它用于描述只有两个可能结果的单次随机试验。
2024-04-22 15:30:09 3345
原创 【DL经典回顾】距离度量大汇总(29-Dice系数(Dice Coefficient))
Dice系数(Dice Coefficient),也称为Sørensen-Dice系数,是一种用于衡量两个样本集合的相似度的统计工具。
2024-04-22 11:14:47 1308
原创 【DL经典回顾】距离度量大汇总(28-点间互信息(Pointwise Mutual Information, PMI))
点间互信息(Pointwise Mutual Information, PMI)是一种信息论的度量,用于衡量两个事件共同发生的概率与这两个事件独立发生的概率的乘积之比。
2024-04-22 11:04:50 1387
原创 【DL经典回顾】距离度量大汇总(27-拉普拉斯核距离(Laplacian Kernel))
拉普拉斯核(Laplacian Kernel)是一种常用的核函数,广泛应用于机器学习的各种核方法中,如支持向量机(SVM)和核主成分分析(KPCA)。
2024-04-22 10:42:55 1765
原创 【DL经典回顾】距离度量大汇总(26-斯皮尔曼等级相关系数(Spearman‘s Rank Correlation))
斯皮尔曼等级相关系数(Spearman's Rank Correlation Coefficient)是一种非参数的统计度量,用于评估两组数据之间的单调关系的强度。
2024-04-22 10:20:08 1369
原创 【DL经典回顾】距离度量大汇总(25-Sorensen-Dice系数)
Sørensen-Dice系数,也简称为Dice系数,是一种用于比较两个样本集合相似度的度量方法。
2024-04-11 15:51:13 1552
原创 【DL经典回顾】距离度量大汇总(24-最优传输距离(Wasserstein distance))
最优传输距离,也称为Wasserstein距离或推土机距离(Earth Mover's Distance, EMD),源自最优传输问题,用于衡量两个概率分布之间的差异。
2024-04-10 15:45:02 928
原创 【DL经典回顾】距离度量大汇总(23-最大均值差异(Maximum mean discrepancy))
最大均值差异(Maximum Mean Discrepancy, MMD)是一种用于衡量两个概率分布差异的度量方法,在机器学习和统计学中尤其用于无参数和核方法中。
2024-04-10 15:34:52 1932
原创 【DL经典回顾】距离度量大汇总(22-巴氏距离(Bhattacharyya Distance))
巴氏距离(Bhattacharyya Distance)是用来衡量两个概率分布之间差异的度量方法。
2024-04-10 15:19:07 1064
原创 【DL经典回顾】距离度量大汇总(20-海氏距离(Hellinger distance))
海氏距离(Hellinger Distance)是一种衡量两个概率分布差异的度量方法。
2024-04-08 10:42:05 1198
原创 【DL经典回顾】距离度量大汇总(19-JS散度(Jensen-Shannon divergence))
Jensen-Shannon散度(JS散度)是衡量两个概率分布差异的一种方法,它基于Kullback-Leibler散度(KL散度)但是对称且总是有界的。
2024-04-08 10:25:48 2906
原创 【DL经典回顾】距离度量大汇总(18-交叉熵(cross-entropy))
交叉熵是衡量两个概率分布之间差异的度量,在机器学习中,特别是在分类问题和神经网络的训练中广泛使用。
2024-04-08 10:13:34 893
原创 【DL经典回顾】距离度量大汇总(17-相对熵(relative entropy))
相对熵,也称为Kullback-Leibler (KL) 散度,是用于衡量两个概率分布之间差异的度量。
2024-04-08 09:54:27 1045
原创 【DL经典回顾】距离度量大汇总(16-卡方检验(chi-square test))
卡方检验(Chi-square test)通常用于统计分析中比较观测值与期望值之间的差异,评估两个类别变量之间是否存在显著的关联性。
2024-04-08 00:56:05 1318
原创 【DL经典回顾】距离度量大汇总(15-堪培拉距离(Canberra Distance))
堪培拉距离是用于度量两个向量间差异的数值度量,特别适用于非负数值数据。
2024-04-08 00:39:23 1432
原创 【DL经典回顾】距离度量大汇总(14-莱文斯坦距离(Levenshtein Distance))
莱文斯坦距离(Levenshtein Distance),又称编辑距离,是两个字符串之间,由一个转换成另一个所需的最少单字符编辑操作的数量。
2024-04-05 23:33:48 1452
原创 【DL经典回顾】距离度量大汇总(13-豪斯多夫距离(Hausdorff Distance))
豪斯多夫距离(Hausdorff Distance)是度量两个点集之间相似度的指标,广泛用于计算机视觉、图像分析和几何形状比较中。
2024-04-05 23:23:28 2001
原创 【DL经典回顾】距离度量大汇总(12-布雷柯蒂斯距离(Bray Curtis Distance))
布雷柯蒂斯距离(Bray-Curtis Distance)是一种用于生态学和生物多样性研究中度量两个样本组成差异的指标,尤其适用于度量物种组成的相似性或差异性。
2024-04-05 23:10:34 2510
原创 【DL经典回顾】距离度量大汇总(11-落合系数(Ochiai’s coefficient))
落合系数(Ochiai's Coefficient),在某些文献中也称为余弦相似度(Cosine Similarity)的一种变体,是一种用于度量两个集合相似度的指标,尤其是在生物学和生态学中用于评估物种多样性。
2024-04-05 22:59:45 758
原创 【DL经典回顾】距离度量大汇总(10-杰卡德相似系数(Jaccard Similarity Coefficient))
杰卡德相似系数(Jaccard Similarity Coefficient)是用来衡量两个集合之间相似度的指标。
2024-04-05 22:49:31 1707
原创 【DL经典回顾】距离度量大汇总(9-汉明距离(Hamming Distance))
汉明距离(Hamming Distance)是两个字符串之间的差异度量,定义为在相同的位置上有不同字符的数量。
2024-04-05 22:37:39 1076
原创 【DL经典回顾】距离度量大汇总(8-皮尔逊相关系数(Pearson Correlation))
皮尔逊相关系数(Pearson Correlation Coefficient)是度量两个变量之间线性相关程度的一个指标。
2024-04-05 22:27:43 1651
原创 【DL经典回顾】距离度量大汇总(7-余弦距离(Cosine Distance))
余弦距离(Cosine Distance)衡量的是两个向量在方向上的差异性,而不是在大小上的差异。
2024-04-05 22:16:38 1874
原创 【DL经典回顾】距离度量大汇总(6-马氏距离(Mahalanobis Distance))
马氏距离(Mahalanobis Distance)是由印度统计学家普拉萨德·查拉·马哈拉诺比斯(Prasanta Chandra Mahalanobis)提出的,用于度量一个点到一个分布或数据集中心的距离。
2024-04-05 22:05:47 1704
原创 【DL经典回顾】距离度量大汇总(5-标准化欧氏距离(Standardized Euclidean Distance))
标准化欧氏距离(Standardized Euclidean Distance)是欧氏距离的一个变种,用于在各个维度的尺度不一致时度量两个点之间的距离。
2024-04-05 21:57:07 1215
原创 【DL经典回顾】距离度量大汇总(4-闵可夫斯基距离(Minkowski Distance))
闵可夫斯基距离(Minkowski Distance)是一个广泛用于度量两个点在n维空间中的距离的方法,它是欧式距离、曼哈顿距离和切比雪夫距离等多种距离度量的一般化形式。
2024-04-05 21:45:42 1349
原创 【DL经典回顾】距离度量大汇总(3-切比雪夫距离(Chebyshev Distance))
切比雪夫距离(Chebyshev Distance),在数学中也被称为L∞距离,是向量空间中的一种度量,它是两个点之间各坐标数值差的最大值。本博客重点介绍这个距离度量方法。
2024-04-03 17:15:21 1263
原创 【DL经典回顾】距离度量大汇总(2-曼哈顿距离(Manhattan Distance))
曼哈顿距离(Manhattan Distance),也被称为L1距离或城市街区距离,是度量两点在标准坐标系上的绝对轴距离总和。本博客重点介绍这个距离度量方法。
2024-04-03 17:05:06 1509
原创 【DL经典回顾】距离度量大汇总(1-欧氏距离(Euclidean Distance))
欧氏距离(Euclidean Distance)是最直观、最常用的距离度量方法之一,用于计算两点在欧氏空间中的实际距离。本博客重点介绍这个距离度量方法。
2024-04-02 23:01:16 1340
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人