阿里云总监课第一期:4小时搞定车联网上云

摘要:阿里云总监系列课重磅上线!聚焦人工智能、弹性计算、数据库等热门领域,首次集齐12位阿里云技术高管,耗时半年精心打磨,从理论到实践倾囊相授,从零开始绘制技术大牛成长路径,直播课程限时免费报名中!


8月10日19:00准时开播!


课程简介


万亿车联网产业正在爆发,传统IDC架构面临淘汰,然而云端部署还有哪些坑?如何从零开始搭建高并发、高可用、高容量的车联网云上架构?提高研发效率、降低成本又应该怎么做? “双11”千亿并发背后的男人——阿里云技术总监杨旭将联合资深解决方案工程师周克伟,全面拆解车联网上云最佳实践。


课程亮点


  • 云上架构VS传统架构性能大起底

  • 车联网云上部署实践七大要点

  • 运维管控&Devops六大应用场景


课程讲师


杨旭(杨曦)

阿里云高级解决方案架构师 

世界最大混合云的总架构师。成功主导 “双11”千亿级别高并发场景在阿里云上的圆满实现。


周克伟(克伟)

阿里云高级解决方案工程师 

曾参与或主导感知零售,智能车联网,LAZADA,UC大数据,易地扶贫搬迁大数据等项目的混合云架构设计和落地实施。拥有非常丰富的互联网,车联网等行业的上云实战经验。


视频课纲


一、车联网行业特性讲解 

二、传统IDC架构介绍及技术详解 

1、业务架构 
2、应用架构

三、云上对标架构及技术详解 

1、云上对标架构介绍 
2、数据迁移策略 

四、云上部署实践详解 

1、数据库准备和配置 
2、基础服务准备和配置 
3、应用部署和配置 
4、负载均衡配置 
5、测试验证 
6、流量割接 
7、安全加固 

五、云上关键业务测试及性能调优 

1、负载均衡选型及性能指标 
2、ECS选型及性能测试 
3、数据库RDS测试及调优
4、Elasticsearch性能测试及调优 
5、云数据库 HBase性能测试及调优 
6、HiTSDB性能测试及调优 

六、运维管控&DevOps 

1、自动扩容/缩容 
2、自动发布 
3、监控报警 
4、日志服务 
5、数据大屏 
6、企业运维管理 

七、车联网云市场推荐 

1、基础软件市场 
2、物联网市场 
3、API市场 

八、使用阿里云带来的价值 

1、节约成本 
2、弹性扩展 
3、安全稳定 
4、快速运维 
5、解决瓶颈和痛点 
6、站在巨人的肩膀上起跳


报名流程


限时免费,识别下方二维码或点击左下角阅读原文马上预约报名!


640?wx_fmt=jpeg


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值