一、题目描述
给出一个有序数组,再给出一个目标数字,通过一个函数寻找数组中的目标数字下标,未找到就返回-1
二、问题分析
这里的二分法查找数据和的二元一次方程二分法找实根的方法一样。先确定一个区间,再找到区间的中间值,将中间值与目标值相比较,确定寻找的值是在前半段还是后半段,更新区间,重复执行。
三、代码
class Solution {
public:
int search(vector<int>& nums, int target) {
int low = 0, high = nums.size() - 1;
while(low <= high)
{
int mid = (high - low) / 2 + low;
int num = nums[mid];
if (num == target)
{
return mid;
}
else if (num > target)
{
high = mid - 1;
}
else
{
low = mid + 1;
}
}
return -1;
}
};
四、总结
使用遍历查找算法,从第一个元素到最后一个元素,时间复杂度最多为O(n)。
使用二分法查找,每次都会使数组长度减半(n,n/2,n/4…n/2∧k),最坏的情况为最后一次只有一个数,才将元素查找到。n/2∧k)=1,得k=㏒2n(2为底,n得对数),时间复杂度为log级,O(lgn),小于O(n)