用Python可以解决的数学问题,探究代数、统计、几何、概率等

我们将编写程序,把数字和公式作为输入,进行一些计算,然后得到解或绘制出图形。其中一些程序能提供强大的计算功能来解决一些数学问题。这些程序能求出方程的解,计算数据集之间的相关性,确定函数的最大值,等等。在其他程序中,我们将模拟现实生活中的事件,如抛物运动、掷硬币或掷骰子。使用程序来模拟这样的事件,让我们可以用一个简单的方法来更好地分析和了解事情本身。

也许你会发现一些不借助计算机程序会非常难于探索的主题,例如,即使在最好的情况下,手工绘制分形图也是一件极为乏味的工作,而如果在最困难的情况下,这简直就是一项不可能完成的任务。有了计算机程序,我们需要做的仅仅是在一个循环中执行相关运算。我想,你会发现,在这种“用Python 学数学”的情境下,学习编程和学习数学都会变得更加令人兴奋、有趣和有益。

 

 

今天推荐的这本《Python数学编程》将三个主题—程序设计、数学与科学结合在一起。更确切地说,学习本书后,我们会通过编程解决高中水平的一些问题,如处理测量单位,研究抛物运动,计算均值、中位数和众数,确定线性相关系数,求解代数方程,描述单摆运动,模拟骰子游戏,创建几何图形,求函数的极限、导数和积分。这是许多人熟悉的话题,不过我们不用钢笔和纸,而是用计算机程序来研究它们。

谁应该读这本书

如果你正在学习编程,你应该会喜欢本书所演示的用计算机解决问题的方法。同样地,如果你是老师,你可以借助这本书的实际应用来训练学生的编程能力,这样做回避了有些抽象的计算机科学。这本书假定读者了解使用 Python 3 进行编程的基础,例如函数、函数的参数、Python 类和类对象的概念、循环。附录B 涵盖了本书程序所使用的其他Python 主题,但本书不详细讲解这些附加主题。如果你觉得自己需要更多的背景知识,建议阅读Jason Briggs 的Python for kids(No Starch 出版社,2013)。

这本书里有什么?

本书由7 章和2 个附录组成。每章结束时都给读者留下了挑战题目。我建议你放手一试,因为在自己编写程序的过程中会学习到更多。这些挑战将要求你探索新的主题,这是提高学习能力的很棒的方法。

  • 第 1 章,处理数字。本章从基本的数学运算开始,逐步深入到需要更高层次的数学技巧的内容。
  • 第 2 章,数据可视化。本章使用matplotlib 库由数据生成图形。
  • 第 3 章,数据的统计学特征。本章将继续讲解处理数据集的主题,包括基本统计概念:均值、中位数、众数和数据集中的变量的线性相关性。还将介绍如何处理CSV 文件数据,这是一种流行的分发各种数据集的文件格式。
  • 第 4 章,用SymPy 包解代数和符号数学问题。本章使用SymPy 库介绍符号数学,从表示和处理代数表达式开始,之后介绍更复杂的问题,如求解方程。
  • 第 5 章,集合与概率。本章讨论了数学中集合的表示,接着深入到离散概率,还将讨论模拟均匀和非均匀随机事件。
  • 第 6 章,绘制几何图形和分形。本章讨论使用matplotlib 绘制几何图形、分形和创建动画。
  • 第 7 章,解微积分问题。本章讨论了一些在Python 标准库和SymPy 库中的数学函数,然后介绍了如何解微积分问题。
  • 附录 A,软件安装。涉及Python 3、matplotlib 和SymPy 在Microsoft Windows、Linux 和Mac OS X 平台下的安装问题。
  • 附录 B,Python 主题概览。讨论了Python 的一些主题,可能对初学者很有帮助。

样章试读:

 

 

 

 

 

 

 

 

发布了475 篇原创文章 · 获赞 275 · 访问量 85万+
展开阅读全文

没有更多推荐了,返回首页

分享到微信朋友圈

×

扫一扫,手机浏览