论文精读
文章平均质量分 72
erdaidai
这个作者很懒,什么都没留下…
展开
-
多粒度在研究中的应用
多粒度的应用原创 2024-01-03 11:46:49 · 527 阅读 · 0 评论 -
【论文详读】Predicting Retrosynthetic Reaction using Self-Corrected Transformer Neural Networks
把数据分为十大类,然后根据聚类来划分数据。在文中,使用二维相似指纹来测量目标产品之间的拓扑相似性,并使用常用的Bemis-Murcko原子框架来聚类产品,相似阈值取0.6。原创 2022-08-01 17:46:07 · 184 阅读 · 0 评论 -
【论文详读】Density weighted support vector data description
Density weighted support vector data description算法思想初始SVDDDW-SVDD代码实现算法思想初始SVDD目标函数:minR2+C∑i=1lξis.t. ∣∣xi−a∣∣≤R2+ξi,ξi≥0 ∀i\min R^2 + C\sum_{i = 1}^l\xi_{i} \\\\s.t.\ \ || \boldsymbol{x}_{i} - \boldsymbol{a}|| \leq R^2 + \原创 2021-01-06 21:26:27 · 391 阅读 · 2 评论 -
Distance Metric Learning for Large Margin Nearest Neighbor Classification
Distance Metric Learning for Large MarginNearest Neighbor Classification假设Large margin nearest neighbor classification (LMNN)凸优化问题能量分类器(energy-based classifier)Nearest Neighbor Classification)假设首先作者基于了以下的假设:对于输入的任意样本xix_ixi 对于其相邻的K个样本,应该让与其相同类别的样本尽量靠近原创 2020-11-09 11:46:00 · 650 阅读 · 1 评论 -
【论文详读】A Fast Adaptive k-means with No Bounds
A Fast Adaptive k-means with No Bounds算法目的具体算法k-meansball k-means相关概念具体实现算法目的该算法是一种改进k-means聚类的算法,其减少了算法中距离计算的次数并提高了算法运行速度。具体算法k-means分配步骤:设置K个初始中心点,把每个点分配到距离最近的中心点所在簇。更新步骤:用簇中所有的点更新中心点,再把每个点分配到距离最近的中心点所在簇。直到更新前后的中心点差别不大时,整个算法结束。ball k-means相关概念原创 2020-08-19 21:53:14 · 1001 阅读 · 3 评论 -
【论文详读】A tree-based incremental overlapping clustering method using the three-way decision theory
A tree-based incremental overlapping clustering method using the three-way decision theory算法目的提出问题解决方法思路分析重叠聚类增量聚类所提算法静态重叠聚类计算代表点构建无向图算法目的提出问题现实中,一个对象可能存在多个身份,属于多个类别。比如,一个研究者会研究多个领域,在聚类时,不能单纯说其只属于某一个领域。如下图,重叠的部分就是即研究计算机也研究石油的研究者。一般聚类是解决静态数据的聚类,数据集没有原创 2020-07-28 22:45:29 · 525 阅读 · 1 评论