erdaidai
码龄8年
关注
提问 私信
  • 博客:108,032
    108,032
    总访问量
  • 65
    原创
  • 24,320
    排名
  • 180
    粉丝
  • 1
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2016-11-29
博客简介:

erdaidai的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    570
    当月
    4
个人成就
  • 获得151次点赞
  • 内容获得45次评论
  • 获得455次收藏
  • 代码片获得1,975次分享
创作历程
  • 3篇
    2024年
  • 6篇
    2023年
  • 17篇
    2022年
  • 8篇
    2021年
  • 11篇
    2020年
  • 2篇
    2019年
  • 1篇
    2018年
  • 18篇
    2017年
成就勋章
TA的专栏
  • 代码
    1篇
  • 论文精读
    6篇
  • python
    11篇
  • 服务器
    12篇
  • 论文写作
    4篇
  • latex
    4篇
  • 机器学习
    12篇
  • Tool
    2篇
  • 数值分析
    2篇
  • Visio
    1篇
  • 度量学习
    1篇
  • 前端开发学习流程
    9篇
  • 前端开发
  • git
    4篇
  • 函数
    2篇
  • 剑指offer
    5篇
  • echarts
    1篇
  • 工具
    2篇
  • 主动学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

NF和C-BRUNO的区别

C-BRUNO是一个条件生成模型,专注于建模高维观测数据的可交换序列,并且通过条件高斯过程和条件化的归一化流(Real-NVP)实现了生成过程。标准化流是一种通用的无条件或条件生成模型,用于通过一系列可逆变换来学习复杂的概率分布。C-BRUNO 结合了标准化流和高斯过程,借助条件标签来高效地生成和建模可交换的数据序列,而标准化流主要关注通过可逆变换来学习复杂分布。因此,两者的目标、应用场景和具体实现细节上有很大的差异。这句话的意思是说,C-BRUNO中的可交换性假设包含了。
原创
发布博客 2024.10.29 ·
816 阅读 ·
17 点赞 ·
0 评论 ·
20 收藏

Boundary Unlearning: Rapid Forgetting of Deep Networks via Shifting the Decision Boundary—代码

在方法中,训练和攻击过程是通过一系列精心设计的步骤来微调模型的。这一过程主要依赖于对抗性训练,其核心思想是利用对抗性样本(即被故意施加扰动的样本)来训练模型,从而使模型在面对扰动输入时更加鲁棒。下面详细解释这一过程:模型预测: 使用添加了扰动的数据对进行预测,得到预测标签。这一步骤检测模型对于对抗性样本的反应,即看模型如何分类经过细微修改的数据。计算损失并更新: 利用对原始数据的预测输出和步骤2中得到的计算损失(即)。然后,根据这个损失更新的参数,以使得在面对对抗性样本时,尽可能地模拟的行为。这里的关键在于
原创
发布博客 2024.03.12 ·
914 阅读 ·
18 点赞 ·
0 评论 ·
18 收藏

多粒度在研究中的应用

多粒度的应用
原创
发布博客 2024.01.03 ·
533 阅读 ·
6 点赞 ·
0 评论 ·
9 收藏

tensorboard可视化——No dashboards are active for the current data set.

出现问题的原因是事件的路径未用绝对路径,
原创
发布博客 2023.12.24 ·
785 阅读 ·
11 点赞 ·
0 评论 ·
11 收藏

IEEE双栏摘要排版

以下就是一些必备的命令行,摘要至于双栏之上,主要是"\IEEEtitleabstractindextext"起作用。特别注意其中的\maketitle应该放在关键词之后。
原创
发布博客 2023.12.21 ·
884 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

论文写作八股

1、方法背景,例如特征选择是什么。2、现有工作做什么3、但是,现有方法存在的问题(掌握度,不能怼太狠)5、具体来讲,讲具体的技术 (技术要注意紧扣回应第三点)6、继第5点写7、实验部分。
原创
发布博客 2023.10.30 ·
149 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

overleaf上踩的坑~

相对应的,在文中使用的时候,全部替换成“algorithm2e ”格式显示不对,且 \\ 换行后不会自动标序号。
原创
发布博客 2023.07.27 ·
833 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

期刊会议审稿意见

期刊审稿意见记录
原创
发布博客 2023.06.03 ·
2338 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

品AAAI文章的写作结构

通过实验和理论分析,给出一些证明或者合适的评价指标。
原创
发布博客 2023.02.22 ·
850 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

再次安装torch踩过的坑

我用conda 从新创建了一个项目环境,安装了一些基础的库。然后当我下载安装torch的时候,报错说安装的空间不足,我看了一下,torch确实比较大,一个多G,但是之前也没有出现过这个问题。一开始以为是docker的问题,但是想了一下,不应该啊,这个服务器磁盘空间那么大,怎么一个torch就不行。后来看了一下磁盘空间具体情况,如下:看得出来很多目录都没有用。最后得出的原因是,我安装anaconda 以及其他环境都是在root下。因为我连接服务器就在了root下,就直接安装在这儿了。
原创
发布博客 2022.12.01 ·
1705 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

创建.gitignore文件并使用

在项目根目录下直接创建一个文件,后缀改成 .gitignore 即可。
原创
发布博客 2022.11.18 ·
5405 阅读 ·
2 点赞 ·
0 评论 ·
24 收藏

Git向Gitea上传项目代码

因为我们先前连接了远程地址,这里就需要先删除关联的 origin 远程库。这里注意,需要把之前add到缓存区的东西删掉再重新传。上传完后,刷新Gitea仓库即可看见刚刚上传的文件。若是返回为空,那就是没有文件。本地就会在git文件夹下看见克隆的这个文件名。,是因为当前命令的目录没有切换到仓库目录下。这里若第一次使用git会报错,没有输入账号。根据提示输入邮箱和名称即可。再次执行remote。
原创
发布博客 2022.10.27 ·
3292 阅读 ·
4 点赞 ·
1 评论 ·
22 收藏

逆合成项目训练及部署需要的环境

(没有GPU的机器上部署)
原创
发布博客 2022.10.18 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

centos7.9安装nvidia驱动

详细安装NVIDIA驱动步骤
原创
发布博客 2022.10.13 ·
1686 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

cuda和cuDNN的卸载

cuda 和 cuDNN 的卸载
原创
发布博客 2022.09.20 ·
2400 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

mindspore_transformer

用mindspore 实现transformer的步骤记录
原创
发布博客 2022.09.13 ·
405 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文详读】Overcoming catastrophic forgetting in neural networks

为了缓解神经网络灾难性遗忘,作者们提出了一种类似于人工神经网络突触巩固的算法(EWC)。该方法通过选择性地放慢对那些任务重要权重的学习来记住旧任务,即该方法会根据权重对之前看到的任务的重要性来减慢学习速度。...
原创
发布博客 2022.08.30 ·
870 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

如何利用在GPU上训练的模型在CPU上测试

我用OpenNMT 在服务器上训练了一个模型,保存的模型会被部署在另外一个没有GPU的机子上。问题来了,在GPU上训练的模型在CPU下是不能跑的。
原创
发布博客 2022.08.29 ·
4152 阅读 ·
2 点赞 ·
0 评论 ·
26 收藏

关于神经网络代码在服务器可以运行,而本地不能运行的那些事儿

然而服务器是有这个文件的,我就猜想是不是pycharm在连接服务器的时候出了问题。经过多次的检查并重新连接服务器,得到的结果还是一样。这让我不知道咋整,因此这个问题搁置了一段时间。就在今天,我在研究是不是和文件路径有关系的时候,果然发现了问题所在。...
原创
发布博客 2022.08.29 ·
632 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文详读】Predicting Retrosynthetic Reaction using Self-Corrected Transformer Neural Networks

把数据分为十大类,然后根据聚类来划分数据。在文中,使用二维相似指纹来测量目标产品之间的拓扑相似性,并使用常用的Bemis-Murcko原子框架来聚类产品,相似阈值取0.6。
原创
发布博客 2022.08.01 ·
184 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多