向量与矩阵的范数定义的总结

向量的范数

范数定义
1-范数
||x||1=i=1N|xi| | | x | | 1 = ∑ i = 1 N | x i |
2-范数
||x||2=(i=1N|xi|2)12 | | x | | 2 = ( ∑ i = 1 N | x i | 2 ) 1 2
范数
||x||=max|xi| | | x | | ∞ = m a x | x i |
p-范数
||x||p=(i=1N|xi|p)1p , (p1) | | x | | p = ( ∑ i = 1 N | x i | p ) 1 p   ,   ( p ≥ 1 )

矩阵的范数

范数定义备注
列范数
||A||1=max1jni=1m|aij| | | A | | 1 = m a x 1 ≤ j ≤ n ∑ i = 1 m | a i j |
A的每列绝对值之和的最大值
行范数
||A||=max1imj=1n|aij| | | A | | ∞ = m a x 1 ≤ i ≤ m ∑ j = 1 n | a i j |
A的每行绝对值之和的最大值
2-范数
||A||2=λmax(ATA) | | A | | 2 = λ m a x ( A T A )
λmax(ATA) λ m a x ( A T A ) ATA A T A 的特征值绝对值的最大值
F-范数
||A||F=(i=1mj=1n|aij|2)12 | | A | | F = ( ∑ i = 1 m ∑ j = 1 n | a i j | 2 ) 1 2
p-范数
||A||p=(i=1mj=1n|aij|p)1p , (p1) | | A | | p = ( ∑ i = 1 m ∑ j = 1 n | a i j | p ) 1 p   ,   ( p ≥ 1 )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值