Codeforces - 1225C 二进制位的应用

本文解析了Codeforces-1225C题目,通过将给定数值n分解为多个(2^ai+p)的形式,寻找满足条件的最小k值。文章深入探讨了解题思路,包括二进制位应用、枚举k值及二进制位中1的个数计数,并附带AC代码。
摘要由CSDN通过智能技术生成

<Codeforces - 1225C> 二进制位的应用

http://codeforces.com/contest/1225/problem/C

题意:

给定n,p,求满足n = (2^a1 + p) + (2^a2 + p) + (2^a3 + p) + ... + (2^ak + p)的最小的k值(a1 ~ ak可以有相等的值)。

例如,n = 24,p = -1,此时k = 4。因为24 = (2^4 - 1) + (2^2 - 1) + (2^2 - 1) + (2^2 - 1),共能拆成4项。

思路:

依题有num = n - kp = 2^a1 + 2^a2 + 2^a3 + ... + 2^ak。如果n - kp为负显然不符合题意,打印-1。枚举k,记num二进制位中1的个数为cnt,宏定义lowbit为x & -x,lowbit的作用是返回最低位的1以及它后面若干个零,所以函数dig_cnt()就返回了二进制位中1的个数,用1<<bit二进制枚举也可以。如果当前k的值 < cnt,那必然没法满足题意,打印-1。因为a1~ak可以有重复的值,所以k未必正好等于cnt,k可以大于cnt,而且只要当前枚举到的k,小于等于num本身就必然满足条件,因为k > num的话,num最多拆成num个2^0,所以就不满足题意了,只要k<=num,就一定能拆成合法的几个2的次幂。

AC代码:

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值