<Codeforces 1005C>
题意:
给定一个序列,问至少需要删除多少个数,使得序列中的每个数都能在该序列里找到一个数(自己除外),进行加和形成2^n。
思路:
思路就是map的应用,先开一个数组 powT[maxx],存 1<<30以内的2^n,然后声明两个map,分别是 mp 和 vis。
先将传进数组的每个数的mp值都为 i (即每个数的角标),这样我在枚举数组内每个元素的时候,要想看它能否和不同于它的数(这里说的不同于它不是说数值不同,而是说角标不同,比如这个序列就是4 4,那显然就不需要删除了,因为互相配对即可)加和形成2^n,只需要枚举2^n和它的差的mp值是不是等于当前的 i,即进行如下操作:
for(int i = 1; i <= n; i++) {
bool flg = 0;
for(int j = 1; j <= t; j++) {
if(mp[powT[j] - a[i]] && mp[powT[j] - a[i]] != i) {
vis[a[i]] = 1;
flg = 1;
break;
}
}
if(!flg && !vis[a[i]]) ans++;
}
找到一个角标不同当前值,且加和等于2^n的元素,就更改flg,并用vis标记这个数,vis的作用是,这个数既然能找到匹配,那么和他相同的数,就不需要枚举了。
本人AC代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <map>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxx = 120000 + 7;
const ll Inf = 1 << 30;
int n, ans;
int a[maxx];
ll powT[maxx];
map <int, int> mp;
map <int, bool> vis;
int main() {
mp.clear();
vis.clear();
cin >> n;
int t = 0;
for(ll i = 1; i <= Inf; i *= 2) {
t++;
powT[t] = i;
}
for(int i = 1; i <= n; i++) {
cin >> a[i];
mp[a[i]] = i;
}
for(int i = 1; i <= n; i++) {
bool flg = 0;
for(int j = 1; j <= t; j++) {
if(mp[powT[j] - a[i]] && mp[powT[j] - a[i]] != i) {
vis[a[i]] = 1;
flg = 1;
break;
}
}
if(!flg && !vis[a[i]]) ans++;
}
cout << ans << endl;
}