R语言 K-M生存分析,ggplot2制作好看的生存曲线

本文介绍了如何使用R语言进行Kaplan-Meier(K-M)生存分析,通过 Surv() 函数创建生存对象,survfit() 函数计算生存率的K-M估计,并利用survminer包的ggsurvplot()生成美观的生存曲线图。
摘要由CSDN通过智能技术生成
> setwd(dir="D:/onedrive/Desktop/xxx/数据")
> data<-read.csv("GGL.csv",header=T)
> GGL<-data
> str(GGL)
'data.frame':	365 obs. of  3 variables:
 $ time  : num  24.3 24.3 24.8 25.3 25.9 ...
 $ status: int  0 0 1 0 0 0 0 0 0 0 ...
 $ group : num  0 0 1 0 1 0 0 0 0 0 ...

对变量转换成因子,并添加标签 

> GGL$group<-factor(GGL$group,levels=c(0,1),labels=c("LPA","Non-LPA"))
> library("survival")
> library("survminer")

  用函数Surv() 创建生存对象:

> surv.obj <- Surv(time = GGL$time, event = GGL$status)
> surv.obj
  [1]  24.26000+  24.33000+  24.79000   25.28000+  25.87000+  25.97000+
  [7]  26.33000+  26.63000+  26.76000+  27.02000+  27.06000+  27.48000+

生存率的K-M估计的计算用函数survfit() 实现:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值