- 博客(635)
- 收藏
- 关注
原创 GigaPath团队最新多模态医学AI研究再度登顶正刊,最快仅需20分钟即可从单张切片生成21个蛋白通道的完整数据
这篇2025-12-09发表于《Cell》的研究提出了多模态AI框架GigaTIME,其核心创新在于通过跨模态翻译技术,从常规H&E病理切片中生成虚拟多重免疫荧光(mIF)图谱,成功搭建了细胞形态与蛋白表达之间的关联桥梁。该模型基于4000万个配对的H&E和mIF细胞数据训练,采用NestedUNet编码器-解码器架构,能够同时输出21种肿瘤免疫微环境(TIME)相关蛋白的空间表达信息,解决了传统mIF技术成本高、通量低导致的数据稀缺问题,为大规模肿瘤微环境建模提供了可行方案。
2025-12-13 14:24:29
633
原创 哈佛与霍普金斯团队最近发表的医学AI模型将C-Index指标推向0.95,可在术前精准识别高转移风险的患者
从依赖医生主观判断到AI客观量化分析,从昂贵的基因检测到常规切片的精准预测,前列腺癌转移风险评估的革命,本质上是“让技术更贴近患者需求”的革命。这款基于组织病理学的AI算法,从常规切片中捕捉隐藏的风险信号,用科技的力量打破了“精准与可及”的矛盾。未来,随着AI与病理诊断的深度融合,我们或许能看到更多癌症的“转移密码”被破解,更多患者能在疾病早期就获得精准的风险评估,从而选择最适合自己的治疗方案。精准医疗不再是少数人的“奢侈品”,而是每个患者都能享受到的“必需品”——这正是科技进步的终极意义。
2025-12-11 11:39:14
575
原创 MASH多智能体系统,协同多种AI模型重塑医疗生态,有望引领医学AI的下一波研究热潮
想象这样一个场景:你因持续腹痛就医,全科医生需要调取你的既往病历、安排影像检查、咨询专科医生意见,还要协调保险公司审批、预约手术时间;这一过程中,每个环节如同独立运作的“信息孤岛”,影像科的报告迟迟没传到外科,保险公司的审批流程耽误了治疗时机,你在反复沟通中疲惫不堪。这正是传统医疗体系的痛点:专业分工明确但协同不足,数据割裂导致效率低下,甚至影响诊疗效果。如今,AI已深度渗透医疗领域,从影像诊断到风险预测,专科AI模型层出不穷。
2025-12-10 14:44:47
1000
原创 我做了一个网站,汇总了近1000个医学影像公开数据,可根据模态、器官、任务、年份以及是否含有标注信息去快速筛选数据
网站结构清晰,主要分为三个部分:首页(数据概览与团队介绍)打开网站首先看到的是核心数据概览、团队简介和合作招募信息。数据集浏览器这是网站最核心的功能页面,用于详细检索和筛选数据集。“加入我们”页面介绍了团队招募联合培养学生、实习生和柔性引进人才的方式。
2025-12-08 09:51:58
967
原创 病理AI实习生招募|顶配硬件+前沿课题+丰厚回报+头部资源
和行业大佬面对面探讨技术趋势,和高校教授头脑风暴课题方向,人脉和认知双提升,让你始终站在行业前沿。这里有靠谱的团队、前沿的课题、顶配的资源和丰厚的回报,就缺一个敢闯敢拼、热爱AI的你!我们会带着大家深度参与多模态病理AI课题,从方案设计到落地实践,全程沉浸式学习。更有上不封顶的项目提成,你的努力直接和回报挂钩,多劳多得超有奔头。病理、影像、基因以及虚拟细胞等前沿的交叉领域,等你一起来探索!优秀的成员,可以参与到课程和软件的研发中,享受高额项目激励。先划重点:我们给你的,远超预期!
2025-12-06 12:08:55
285
原创 为什么现在大家都不卷基础模型了?已有的基础模型离临床到底有多远?
在过去两年里,数十亿美元涌入了病理学基础模型领域,数十家初创公司纷纷成立。谷歌、Meta和微软的主要实验室将大量研究精力转向构建能够彻底改变数字病理学的“通用”模型。前景很明确:在海量未标记数据集上进行预训练,从数十亿个组织切片中学习,为任何病理学任务创建终极特征提取器,然而临床应用率仍几乎为零。没有医院用基础模型取代病理学家,没有诊所将它们用作主要诊断工具。问问任何使用这些工具的病理学家,你会听到同样的挫败感:“感觉我们的工具不是病理学家设计的。他们说得对。
2025-12-01 17:38:46
585
原创 人工智能在免疫基因组学、放射组学与病理组学中对生物标志物发现及免疫治疗优化的变革性作用
肿瘤免疫微环境(TIME)涉及肿瘤细胞、免疫细胞、基质细胞以及细胞外基质中各种信号因子之间的复杂相互作用,从而促进或阻碍免疫功能,并最终影响肿瘤进展。TIME 中细胞和分子成分之间广泛的信号串扰在癌症的发生、发展、治疗反应和预后中起着关键作用(图 1)。图中细胞/结构的组成肿瘤相关细胞:癌细胞(Cancer cell,肿瘤核心)、癌相关成纤维细胞(Cancer-associated fibroblast,支持肿瘤生长的基质细胞);
2025-12-01 11:05:58
843
原创 北大一院肾内科与国家生物医学成像中心牵头KIP项目,整合分子、细胞以及器官层面的多组学数据,旨在构建数字器官模拟疾病进展
KIP项目由北京大学第一医院肾内科与国家生物医学成像中心(NBIC)牵头,计划持续至少10年,核心目标是打造一套覆盖“宏观-介观-微观”的多模态肾脏影像组学数字图谱。肾脏的复杂程度远超想象:每个肾脏包含百万个肾单位,缠绕着密集的毛细血管,还藏着分泌激素的间质区,就像一座布满精密管线和功能舱的“微缩城市”。这座“城市”的病变可能是局部的“管线堵塞”,也可能是弥漫的“系统故障”,既可能发生在宏观组织层面,也可能源于微观细胞的分子异常。
2025-11-11 15:19:51
1106
原创 Nature大子刊再发病理基础模型,用来自20个器官的33.5万张切片进行训练,旨在破解罕见病诊断与多模态分析难题
该研究提出的TITAN模型,我去年12月份就分析过,但是当时还是预印刊,最近正式发表在《Nature Medicine》;特意强调一下时间,是为了防止部分初涉这个研究方向的读者,误认为病理基础模型又可以发大子刊了;该研究为医学AI在病理领域的应用提供了新范式:一方面,TITAN将自监督学习从补丁级升级至全切片级,结合视觉-语言对齐实现多模态理解,为后续病理基础模型的研发提供了技术参考;
2025-11-10 11:08:25
1124
原创 从柳叶刀肿瘤到国自然申报|无标注深度学习 + 肺癌突变机制:从 “表型 - 基因型” 关联到国自然医工交叉项目的申报逻辑示范
肺癌精准治疗高度依赖驱动基因突变检测,但传统基因组检测存在样本要求高、耗时耗资源等瓶颈,尤其难以覆盖低资源地区及晚期穿刺活检患者。由腾讯AI Lab与广州医科大学等联合研发的DeepGEM模型,通过无标注深度学习技术与肺癌组织学表型-基因型关联机制的深度融合,实现了多类型活检样本的基因突变精准预测及空间分布解析。本文将拆解其“医学需求→技术创新→机制阐明→临床转化”的完整链条,为医工交叉项目设计及国自然申报提供实操思路。
2025-11-10 10:59:28
836
原创 AI 空间细胞表型分析赋能肺癌诊疗:从 “看大小” 到 “看邻里”,精准分层风险
从“看肿瘤大小”到“看细胞邻里关系”,AI空间细胞表型分析的突破,本质上是让我们更“细致”地看待癌症——不再把肿瘤当作一个孤立的“肿块”,而是一个有生命的“生态系统”。
2025-11-05 23:19:05
886
原创 以AI+肾脏为例,讲解如何从零开始一个交叉学科的研究
近期因为个人需求,在做方面的文献调研,借着这个机会,和大家分享一下我的调研结果。老规矩,首先看整体的发文趋势,我使用了下列检索词在pubmed进行了文献检索。这个趋势很明显,AI与肾脏领域的交叉程度越来越高,但是,这个领域AI渗透的程度还远远不够!上图右侧的图,来源于我24年年底的一篇推送,当时我用同样的标准对病理AI在24年的发文趋势做了一个调研;我们可以很容易的发现,2024年肾脏AI的所有发文数量,甚至快要被病理AI一个月的发文数量追平了,所以,还有巨大的探索区间。既然。
2025-11-02 14:13:08
671
原创 整合多中心临床试验的转录组与病理切片数据,提出面向晚期非小细胞肺癌免疫治疗疗效预测的解决方案
今天和大家分享的研究,于2025-10-29发表于《Advanced Science》,针对晚期非小细胞肺癌(NSCLC)免疫治疗疗效预测的临床痛点,整合多中心临床试验(OAK、POPLAR、ORIENT-11)及院内队列共1127例患者数据,提出基于转录组的机器学习模型LIRA(Lung Cancer Immunotherapy Response Assessment);
2025-10-31 23:55:55
912
原创 国自然·医工交叉热点|泛癌组织学重建AI模型
在医学AI飞速发展的今天,肿瘤组织学分析早已离不开深度学习的助力——从肿瘤分类到分子特征识别,AI模型正在重塑病理诊断的流程。但一个关键难题始终困扰着科研人员:这些模型提炼的高阶图像特征如同“黑箱”,其生物学意义难以解读,这不仅限制了模型的临床转化,也成为国自然申报中“创新性”与“研究价值”的核心瓶颈。
2025-10-24 23:03:17
989
原创 跨模态、跨领域的多语言医学基础模型M3FM发布,旨在解决罕见病诊断、非英语语言场景下标注数据稀缺的问题
该文章提出了一种名为M3FM(Multimodal Multidomain Multilingual Foundation Model)的多模态多领域多语言医学基础模型,旨在解决传统医学AI在罕见病诊断、非英语语言场景下标注数据稀缺或缺失的核心痛点。
2025-10-23 10:35:29
745
原创 国自然申报·医工交叉热点|深度学习+液体活检+肿瘤复发风险评估
对于科研人员而言,申报时需突出这一创新与现有单一方法的本质区别:相较于单独使用ctDNA或病理评估,该组合能同时覆盖分子层面和形态学层面的风险信息,显著提升预后评估精度(MRD阳性组HR=1.58,MRD阴性组HR=2.1,均p<0.005)。申报时,科研人员需进一步强化临床转化路径的描述,例如:与病理科合作实现WSIs的标准化处理,与肿瘤科联合开展前瞻性验证,明确模型在医院信息系统中的嵌入方案等,让评审专家看到研究从“实验室”走向“临床”的可行性。近期有国自然申报需求的老师可以扫码加入交流群!
2025-10-22 08:37:01
922
原创 JAMA Oncol发表最新医学AI研究,聚焦肿瘤浸润淋巴细胞在晚期黑色素瘤免疫治疗中的预后价值
免疫检查点抑制剂(Immune Checkpoint Inhibition, ICI)的出现,曾为晚期黑色素瘤患者带来了革命性的生存改善,10年总生存率最高可达43%。但光鲜数据背后藏着残酷现实:并非所有患者都能从中获益,高达60%的联合治疗患者会遭遇严重毒副作用,且每位患者的治疗成本最高可达13万美元。临床上迫切需要一种精准的“导航工具”,提前识别出最可能受益的患者,避免无效治疗带来的身体伤害与医疗资源浪费。而AI检测TILs技术的突破,正是这场精准医疗革命中最关键的“导航仪”。
2025-10-21 11:26:03
682
原创 国自然·医工交叉热点|整合临床、病理、影像的多模态模型+术后复发预测+免疫通路分析
申报国自然时,可在此基础上进一步延伸:比如验证IL-6/JAK/STAT3通路是否为复发的关键驱动通路,探索影像组学特征与免疫细胞浸润的量化关联,这些延伸方向能显著提升项目的理论深度,契合国自然“鼓励源头创新”的导向。从临床痛点出发,以多模态技术为抓手,结合分子机制探究,完美契合国自然“源头创新+服务临床”的核心导向。这些临床痛点,正是国自然申报的“黄金切入点”——国自然鼓励解决实际临床问题,这类未被满足的预后评估需求,天然具备“应用价值”的核心竞争力,也是研究的出发点和落脚点。
2025-10-21 11:21:35
836
原创 上科大沈定刚团队基于6991例患者的14472张影像,构建了一个跨越3种模态的模型,评估HER2状态并预测新辅助治疗反应
在肿瘤诊疗的“精准时代”,乳腺癌作为全球发病率最高的癌症,其治疗方案的制定高度依赖对肿瘤标志物的准确评估。其中,人表皮生长因子受体2(HER2)的状态直接决定患者是否能从靶向治疗中获益。
2025-10-20 10:56:37
1164
原创 GleasonXAI赋能前列腺癌病理分级,让AI像病理学家一样“看懂”并“说清”肿瘤侵略性
如果说传统医疗AI是“只会给分的批卷机器”,GleasonXAI就是“会写评语、懂教学的老师”——它不仅能给出准确的分级结果,还能教会我们“如何判断”,更能在我们忽略细节时及时提醒。在AI快速渗透医疗的今天,“准”只是基础,“可信”才是关键。GleasonXAI的突破,不在于它比传统AI多准了0.022个Dice系数,而在于它让AI第一次用病理学家的逻辑思考、用医学的语言解释——这种“懂行”的特性,才是让AI真正走进临床、帮助医生、惠及患者的关键一步。
2025-10-20 09:35:52
830
原创 基于6个中心4000余名患者的病理切片开展7项泛癌临床任务测试,验证多实例学习加基础模型方案的实用性
今天和大家分享的这篇文章,我曾经深度解读过,最近又突然想起了这篇文章,就想着翻出来重温一下,看看能不能有些新的感悟。该文章聚焦多实例学习(MIL)与基础模型(FMs)在病理全切片图像(WSI)分析中的融合应用,针对传统MIL方法在特征提取与聚合环节的局限性,系统开展了多维度基准测试。研究选取6种主流病理领域FMs(如UNI、CONCH、CTransPath等)作为补丁级特征提取器,搭配6种代表性MIL特征聚合方法(包括ABMIL、CLAM、RRT等);
2025-10-14 09:27:15
959
原创 国自然申报·医工交叉热点|单细胞多模态融合破解病理研究痛点
PAST模型的价值,不仅在于实现了病理AI的技术突破,更在于为医学AI科研人员提供了国自然申报的“模板”:从文献中找准“形态-分子断层”这类真问题,用“跨模态融合”构建创新框架,再紧扣“基层检测难、预后判不准”等临床痛点设计研究;这样的申报书,既符合国自然“源头创新、服务临床”的导向,又能让评审看到研究的实际价值。你的研究能解决哪个临床“卡脖子”问题?是否有足够的临床数据支撑?如何设计从“实验室”到“病床边”的转化路径?想清楚这三个问题,国自然申报就成功了一半。结束语。
2025-10-14 09:11:11
718
原创 无需标注的病理切片分类与可解释分析系统,零基础让你上手病理AI项目!
软件启动通过运行gui_train_launcher.py脚本启动软件首次运行时可能出现依赖包缺失提示,需要通过pip install安装所需依赖包安装过程中遇到问题可随时与老师交流界面组成包含病理切片分析全流程所需功能模块采用网格布局(glay)进行控件排列主要控件包括:保存目录选择器(save_dir_selector)数据集名称输入框(dataset_name_edit)比例参数设置组件。
2025-10-12 18:09:05
852
原创 AI虚拟细胞(AIVCs)赋能生命科学:三大数据支柱与闭环学习破解传统实验困局
回到开篇的烹饪类比:如果传统细胞实验是“靠经验摸索的家常菜”,AIVCs就是“有精准配方和智能调控的现代厨房”——它不仅能稳定做出“好菜”(重复实验结果),还能根据“食客口味”(研究需求)调整配方(模拟不同场景),甚至创造新的“菜品”(发现未知规律)。当然,AIVCs还有很长的路要走:比如构建人类复杂细胞(如神经细胞、免疫细胞)的模型,还需要更多动态数据;闭环学习的自动化程度,也需要进一步提升。但不可否认的是,它已经打开了一扇新的大门——让我们用数字方式“养育”细胞,用AI解读生命的语言。
2025-10-12 17:08:44
760
原创 深度学习赋能基因与蛋白质研究:从“盲猜”到“精准导航”的生命科学革命
回到开篇的拼图类比:如果生命是一幅无穷无尽的拼图,那么深度学习就像给了我们一盏“透视灯”——它不仅能帮我们快速拼出已知的部分,还能照亮那些“缺失的拼块”,让我们看清生命的全貌。从AlphaFold解析第一个蛋白质,到AI设计第一个人工酶,再到未来可能的“基因编辑治疗”,我们正在经历一场“读懂生命、改造生命”的革命。这场革命的核心,不是AI取代科学家,而是让人类更懂生命的规律,更有能力对抗疾病、守护健康。参考资料。
2025-10-10 13:10:07
842
原创 基于1.5亿个细胞、10个细胞谱系以及100万条金标准注释训练模型,对多重成像数据中的细胞表达进行自动分类
回到开篇的类比:如果把多重成像数据比作“细胞的百科全书”,传统方法就像“只看目录找答案”,而Nimbus则是“读懂每一页细节的智能读者”。它的突破,不在于“发明了新的成像技术”,而在于“用更聪明的方式解读已有数据”——这正是AI与生物医学交叉的魅力所在。随着Nimbus代码和Pan-M数据集的开源(https://github.com/angelolab/Nimbus-Inference),越来越多的科研团队将能用它探索生命的奥秘:从大脑的神经细胞网络,到胎盘的母胎界面,再到慢性病的组织损伤过程。
2025-10-10 10:46:54
1160
1
原创 国自然青年基金申报必看!影像组学国自然本子这么写,避开C类、冲刺A评
小罗碎碎念针对上述问题,我们特意邀请团队里深耕乳腺癌影像组学+AI的黄sir,结合他自己的中标经验,和大家分享如何去解决这些棘手的问题。为了尽可能让更多的人接触到本次分享内容,我们团队将邀请黄sir于25-10-10晚19:00在视频号直播,和大家介绍“如何撰写影像组学国自然本子”,感兴趣的可以扫码预约直播,在分享结束后,可以在评论区与黄sir互动!
2025-10-10 09:57:58
802
原创 国自然·医工交叉热点|通用医学影像分割基础模型与数据库
国自然最看重“解决真问题”,所以第一步要从文献里挖掘现有研究未突破的关键科学问题——这些问题正是你申报时“立题依据”的核心。这篇文献明确指出了当前医学影像分割领域的3大瓶颈,每个都能直接对接国自然“人工智能+医学”的研究方向。通用模型的“负迁移”难题:无关数据拖垮性能开放世界(OOD)场景评估缺失:临床落地“卡脖子”数据资源“散、乱、无标准”:研究基础薄弱公开课|如何撰写影像组学国自然本子。
2025-10-09 22:56:53
912
原创 纵向皮肤影像数据集赋能AI皮肤癌检测:从“单张快照”到“全身动态监测”
回到开篇的“拼图”类比过去的AI只拿着“单张痣图”拼临床诊断的 puzzle,而这个纵向数据集给了AI“全身痣的全景图”“时间变化的动态图”和“患者背景的说明书”。它的突破,本质上是让AI从“实验室里的精准”走向“临床中的实用”——不再是“纸上谈兵”,而是能真正贴合医生的诊断逻辑,适应普通人的健康需求。皮肤癌是全球发病率增长最快的癌症之一,早期检测是降低死亡率的关键。
2025-10-09 02:13:57
861
原创 基于4个癌种、4000余张切片以及3000余位患者的多模态信息,对病理基础模型进行微调,用于后续的多任务学习
如果说过去的SLFM是“只会看切片的专科助理”,那么ModalTune就是“能看切片、读报告、懂基因,还会多任务处理的全科助手”。它没有推翻现有技术,而是通过“适配器”和“统一语言”的巧妙设计,让SLFM的潜力被充分释放。对患者来说,这意味着更精准的诊断、更个体化的预后评估;对医生来说,这意味着更高效的工作流程、更全面的决策支持;对数字病理领域来说,这意味着“小数据也能用好AI”“多模态信息能真正融合”的新时代。
2025-10-09 01:34:57
966
原创 AI赋能药物研发:从“大海捞针”到精准突破,重塑新药诞生之路
如果说传统药物研发是“蒙眼在大海里捞针”,AI就像是“先绘制海底地图,再用精准探测器定位针的位置”。它不是要取代科学家,而是要成为科学家的“超级大脑”——处理人类无法消化的海量数据,发现人类难以察觉的关联规律,让研发决策更有依据。当然,AI也面临挑战:高质量数据的缺乏、模型的可解释性问题、虚拟预测与真实实验的差距,都需要逐步解决。但不可否认的是,AI已经开启了药物研发的“精准时代”——未来,当我们面对癌症、阿尔茨海默病等难治之症时,或许不再需要“等待幸运降临”,而是能用AI更快找到治愈的希望。
2025-10-09 00:31:17
1179
原创 AI大模型赋能药物研发:破解“双十困局”的跨界革命
从腾讯、百度的早期布局,到字节跳动、中国电信的后来居上,这些跨界玩家带来的不只是技术,更是一种“用新思维解决老问题”的勇气。当然,我们也要清醒地看到,AI制药不是“魔法”——它依然需要科学家的专业判断,需要严格的临床验证,需要时间去打磨。行业里既有10亿美元的融资,也有企业破产、管线失败的案例。但正是这种“冰与火”的碰撞,说明AI制药正在从“幻想”走向“务实”。
2025-10-08 23:48:42
667
原创 医疗大模型赋能智慧医院:破解诊疗痛点的AI新范式
本文作者|罗小罗团队·市场组你有没有过这样的就医经历?一大早赶到医院,却因为不清楚症状挂错了科室,白白浪费半天时间;做完CT检查后,要等几个小时甚至一天才能拿到报告;家里老人查出疑似罕见病,跑了三四家医院,却因为医生缺乏相关经验,始终得不到明确诊断……这就像走进一座没有导购的大型超市,既找不到目标货架,又看不懂商品说明,想买件合适的东西难如登天;在传统医疗场景中,这样的“困境”并不少见。一方面,医生的诊疗能力受限于个人经验,面对罕见病、复杂病理时容易“力不从心”;
2025-10-08 23:22:58
1322
原创 多模态医学AI公开数据集|包含影像、病理、基因以及临床信息的胃食管癌公开数据
基因型与表型数据库(dbGaP)托管NCI“癌症登月计划”生物样本库(CMB)项目的基因组数据、表型数据及临床数据。NCI癌症研究数据共享平台(CRDC)提供额外数据访问服务,并搭建了基于云技术的数据科学基础设施。11月团队将在【北京】、【上海】和【广州】三个城市开展线下培训课程,可以选择任意一个城市参加。该基础设施将数据集与分析工具相连接,支持用户对癌症研究数据进行共享、整合、分析及可视化处理。相关的基因组数据、表型数据及临床数据将由基因型与表型数据库(,大部分来自国内外顶尖院校/医院,期待您的加入!
2025-10-08 01:40:42
601
原创 MICCAI|肿瘤微环境引导病理基础模型微调:破解食管鳞癌免疫治疗响应预测难题
一位医生面对两张食管鳞癌患者的病理切片,在显微镜下,两张切片的细胞形态看似差异甚微,但其中一张对应的患者能从免疫治疗中获益,另一张却可能出现严重副作用。这就像侦探面对两起看似相似的案件,关键线索藏在肉眼难以察觉的“人际关系”里——而这里的“人际关系”,正是肿瘤微环境(Tumor Microenvironment, TME)中细胞间的复杂互动。
2025-10-08 01:35:02
913
原创 医学AI公开数据集|QUILT-1M:包含100万组病理图像与文字描述对的视觉-语言数据集
当一位病理医生在显微镜前观察组织切片时,他就像一位试图破解复杂案件的侦探——每一个细胞形态、每一处组织结构的异常,都是指向疾病真相的“线索”。但如果这位“侦探”想借助人工智能(AI)提升破案效率,却会遇到一个棘手问题:能用来训练AI的“线索库”(病理图文数据)实在太少了。传统病理领域的图文数据集要么规模微小(如ARCH仅7614对图文),要么覆盖范围有限(如OpenPath虽达20万对,仍难满足多亚专科需求),导致病理AI始终“吃不饱”,难以应对千变万化的疾病亚型。而今天要介绍的。
2025-10-08 01:25:22
1316
原创 26年国自然·医工交叉热点|肺癌AI突变预测+病理组学
今天咱们就以《基于组织病理图像的深度学习预测肺癌基因突变:多中心回顾性研究》(发表在Lancet Oncol,质量够硬)为例子,一步步拆解国自然申报的关键环节。这篇文献聚焦肺癌基因突变检测——一个临床急需解决的痛点,用AI技术突破了传统方法的局限,完美契合国自然“源头创新、服务临床”的导向。
2025-10-06 00:08:19
1522
原创 覆盖9个癌种,基于11671张病理切片训练的模型登上Nature子刊,可精准“读出”分子标志物,突破传统分类局限
想象一下,如果你去体检时,医生只告诉你“血压正常”或“血压异常”,却不告诉你具体数值——你无法知道自己是接近正常上限还是严重超标,后续调理也没有精准方向。在癌症病理诊断中,类似的“粗糙判断”已经存在了多年:传统的深度学习技术分析病理切片时,总是把像“同源重组缺陷(HRD)”这样的关键分子标志物,简单归为“有”或“无”两类。但实际上,这些标志物更像血压、血糖,是连续变化的“刻度值”,强行分类会丢失大量关键信息,就像用“冷热”描述体温,却忽略了37℃和39℃的本质差异。
2025-10-05 23:47:11
1769
原创 IF18+|多模态模型PAMT:打通病理影像与基因数据的“语言壁垒”,让癌症生存预测更精准可解释
当一位肿瘤科医生面对癌症患者时,就像侦探同时拿到两份关键线索:一份是病理切片(相当于“现场照片”,记录细胞形态的异常),一份是基因报告(相当于“作案动机”,揭示分子层面的突变)。过去,这两份线索更像“两套独立的密码本”——医生能分别看懂,但没法精准对应“哪个基因异常导致了切片上哪个区域的细胞病变”,更难据此准确预测患者的长期生存风险。这正是癌症生存分析领域的长期困境——单靠病理/影像(“看外观”),难以捕捉隐藏的分子机制;单靠基因数据(“查内因”),又无法关联具体的组织病变。
2025-10-05 22:12:47
967
原创 虚拟细胞赋能药物研发:AI驱动的“细胞模拟器”如何破解研发困局
想象一下,如果你要修理一台精密的智能手机,却只能通过“换零件试错”来判断问题——换个屏幕看是否能开机,换个电池看是否能充电,每试一次就要拆开整机,耗时又费钱。这正是传统药物研发的真实写照:为了找到一款有效的疗法,科学家往往要在实验室里反复测试成千上万种化合物,90%的候选药物会在临床试验阶段失败,平均每种成功药物的研发成本超过20亿美元,耗时长达10年。问题的核心在于,我们一直缺乏一种能“提前看见细胞反应”的工具。
2025-10-05 11:13:36
1182
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅