- 博客(523)
- 收藏
- 关注
原创 Nature Cancer发表医学AI多模态模型,整合临床、基因、影像以及病理数据,探索跨模态信息融合方法
疾病现状HGSOC是妇科恶性肿瘤主要死因,5年生存率低于30%,现有预后因素(如HRD状态、年龄、病理分期等)无法充分解释临床结局异质性。研究目标探索整合CT影像、组织病理和临床基因组数据,通过机器学习提升HGSOC患者的风险分层准确性。OncoFusion 是一款综合性机器学习流水线,旨在通过多模态数据整合对患者的总生存期进行风险分层。组织病理学全玻片图像(H&E WSIs)增强计算机断层扫描(CT)靶向测序面板(基因组数据)临床协变量。
2025-05-23 10:35:42
403
原创 无需免疫组化辅助,基于弱监督多实例学习框架即可通过HE全切片预测PD-L1表达
本文提出了一种基于弱监督多实例学习(MIL)的深度学习方法,用于从乳腺癌的H&E染色组织病理图像中预测PD-L1表达,为乳腺癌免疫治疗的生物标志物评估提供了一种高效、经济且可靠的新途径,有望推动深度学习在病理人工智能领域的应用,促进医疗资源的合理配置。安装Miniconda创建项目环境。
2025-05-22 09:33:55
611
原创 虚拟染色模型PSPStain :通过蛋白质感知和原型一致学习策略,解决HE到IHC的虚拟染色问题
技术需求传统H&E染色仅能显示细胞形态,而免疫组化(IHC)染色可在分子水平特异性显示蛋白表达。病理语义挖掘不足:现有方法未直接利用蛋白表达水平(分子级语义),仅保留分级信息导致语义分散。空间语义错位:H&E与IHC图像因组织切片差异存在空间不一致,直接训练会导致语义错误分组或分离。现有方法局限早期基于GAN的方法缺乏病理约束,后续方法逐步引入分级、斑块级语义,但未解决分子级语义保留和空间错位问题。
2025-05-21 08:36:14
779
原创 从无标注的病理切片中自动提取临床相关的组织形态表型簇,探索其与患者预后、分子表型以及治疗反应的关联
传统结肠癌诊断依赖病理学家对苏木精-伊红(H&E)染色切片的显微评估,结合TNM分期等临床病理特征制定治疗策略,但面临老龄化人口带来的诊断负担及分子标记物检测的复杂性。数字病理技术通过扫描全玻片图像(WSIs)结合深度学习(DL)提升了诊断效率,但传统监督学习需大量人工标注。本研究旨在利用自监督学习(SSL)从无标注的H&E WSIs中自动提取临床相关的组织形态表型簇(HPCs),并探索其与患者预后、分子表型及治疗反应的关联。
2025-05-20 20:02:53
824
原创 整合病理图像、临床信息和测序数据,构建癌症生存预测的多模态模型
本文介绍了MMsurv模型,一种多模态多实例深度学习框架,旨在解决癌症生存预测中多模态数据利用不足和模型可解释性差的问题。该模型整合了病理图像、临床信息和测序数据,通过ResNet50提取图像特征,利用词嵌入技术优化临床特征编码,并结合Cox分析筛选关键基因。研究设计了基于紧凑双线性池化与Transformer的多模态融合方法MMF-CBPT,通过双层多实例学习模型筛选与预后相关的特征图块,最终实现生存风险预测。实验在TCGA的6种癌症数据集上进行,结果显示MMsurv的平均C-index达0.7283,显
2025-05-19 09:25:16
671
原创 UN-SAM:一种高效且通用的细胞核分割模型,有望进一步推动自动化数字病理诊断的临床落地
本文提出了一种名为UN-SAM的框架,旨在解决数字病理学中细胞核分割面临的挑战,如组织类型多样、染色方案和成像条件差异等。传统方法依赖人工标注,且跨域泛化能力不足。UN-SAM通过三个核心模块实现全自动、跨域鲁棒的细胞核分割:多尺度自提示生成模块(SPGen)自动生成高质量掩码提示,替代人工标注;域自适应调优编码器(DT-Encoder)融合跨域共有特征与特定领域知识,增强特征判别力;域查询增强解码器(DQ-Decoder)利用可学习的域查询向量,提升跨域分割精度。实验结果表明,UN-SAM在多个数据集上显
2025-05-17 09:11:06
839
原创 基于疾病知识库引导的扩散模型,融合临床知识生成甲状腺癌罕见亚型的超声图像,提升模型对罕见肿瘤的诊断准确性
本文提出了一种文本引导的扩散模型——Tiger模型,旨在解决罕见甲状腺癌亚型超声诊断中数据稀缺和模型性能不足的问题。通过融合临床文本描述与图像生成,该模型显著提升了罕见亚型检测的准确性和鲁棒性,为医学AI在罕见病领域的应用提供了新方向。数据来源Tiger Model的训练数据来自医院和学术期刊的甲状腺超声图像及对应报告。医院数据提供临床实际病例信息,期刊数据则涵盖研究成果相关病例,丰富了数据多样性。训练依据基于疾病亚型特征差异,借助疾病知识(Prompt )进行训练。
2025-05-15 11:34:35
737
原创 基于临床数据与病理切片构建多模态医学AI模型,实现腋窝淋巴结转移的术前精准预测
Multimodal AI model for preoperative prediction of axillary lymph node metastasis in breast cancer using whole slide images”这篇论文开发了一种多模态人工智能模型METACANS,结合原发性肿瘤活检全切片图像(WSIs)和临床病理特征预测乳腺癌腋窝淋巴结(ALN)转移,在多队列中进行验证,分析了模型性能、关键信息及临床病理特征的影响,讨论了模型的优势、局限性及未来研究方向。
2025-05-15 11:28:51
1089
原创 增强版HoVer-Net,提升病理图像细胞核分割与分类模型的鲁棒性
本文介绍了一种创新的深度学习框架,用于数字病理图像中细胞核的精准分析,对癌症诊断与预后具有重要意义。该框架针对现有方法受限于数据集变异性、易陷入局部最优的问题,采用两级集成建模策略,并对HoVer-Net架构进行改进,如更新编码器、优化解码器和实施模型正则化,旨在实现更准确且鲁棒的细胞核分析。基础模型基于HoVer-Net构建,运用不同的编码器骨干,输出多种用于细胞核检测、定位和分类的特征图,并通过模型正则化和复合多任务损失函数提升性能。模型集成系统包含模型内集成和模型间集成,充分融合不同模型和输入增强带来
2025-05-13 10:26:02
832
原创 借助病理AI基础模型处理病理切片,最终得到切片级聚合和分类结果的完整工作流程
本文详细介绍了全切片图像(WSI)处理的完整工作流程,涵盖从初始切片处理、补丁提取、使用基础模型生成特征嵌入,到最终切片级聚合和分类的各个阶段。流程首先通过预处理和补丁提取将十亿像素的全切片图像转化为可处理的补丁,随后使用多种基础模型进行特征提取,生成特征嵌入。最后,通过不同的聚合方法将补丁级别的特征组合成切片级别的预测,用于分类或预测任务。文章还提供了关键参数设置、模型选择建议以及实现注意事项,帮助读者更好地理解和应用这一流程。此外,作者还介绍了医学AI交流群和知识星球,为读者提供了进一步交流和学习的平台
2025-05-13 09:14:19
841
原创 基于HE染色的组织病理切片构建模型,预测宫颈癌共识分子亚型,并对肿瘤微环境进行分析
文章介绍了一种基于深度学习的端到端框架,用于从H&E染色组织学切片的数字化图像中预测HPV阳性宫颈鳞状细胞癌(CSCC)的共识分子亚型(CMS)。研究分析了三个国际CSCC队列,共计545例样本,通过跨队列实验验证,模型在预测CMS状态上表现出色,其数字CMS评分在疾病特异性生存和无病生存分析中具有显著的预后意义,与分子CMS分类的预测能力相当。此外,研究还揭示了C1和C2两种CMS亚型在组织学和免疫学特征上的差异,为理解肿瘤生物学行为和潜在治疗靶点提供了新见解。尽管研究存在一定局限性,如部分队列预
2025-05-12 11:02:04
943
原创 结合影像组学和病理组学数据构建多模态模型,在新辅助化疗之前实现对患者病理完全缓解状态的预测
本文介绍了一项发表在Science Advances上的研究,旨在利用多模态集成全自动管道系统(MIFAPS)预测乳腺癌患者新辅助化疗(NAC)后的病理完全缓解(pCR)。研究整合了磁共振成像(MRI)、全切片图像(WSI)和临床数据,构建了MIFAPS模型。该模型在1004例患者的回顾性和前瞻性研究中表现出色,AUC值在外部测试集和前瞻性测试集中分别达到0.882和0.909,显著优于单模态模型。研究还通过模型可视化和生物学基础探索,发现高深度学习分数与免疫相关通路及肿瘤微环境中的抗肿瘤细胞有关。尽管研究
2025-05-12 08:36:17
858
原创 整合临床信息、影像组学以及组织学数据,解决癌症免疫治疗缺乏有效生物标志物的问题
MANIFEST: Multiomic Platform for Cancer Immunotherapy》由Kok Haw Jonathan Lim等人撰写。文章介绍了MANIFEST这一用于癌症免疫治疗的多组学平台,旨在解决免疫治疗中缺乏有效生物标志物的问题,通过多组学分析和人工智能技术,实现对患者的深度剖析,为个性化免疫治疗提供支持。设计MANIFEST是一项由英国生命科学办公室和医学研究委员会资助的观察性、非干预性临床研究。
2025-05-08 11:35:13
1051
原创 基于临床任务的计算病理学切片聚合方法研究
深度学习推动计算病理学发展,WSI常被分割为小瓦片分析,弱监督学习结合预训练视觉模型编码瓦片特征向量,自监督学习训练FMs成为趋势。但该领域依赖公共数据集评估下游任务性能,在临床应用中存在局限性,如TCGA数据集用于组织学分析时,受高肿瘤患病率、旧扫描技术和冰冻切片组织等因素影响,限制了组织学研究的准确性和泛化性。已有相关研究在评估AI算法性能时存在不足,如Laleh等人(2022)未充分关注切片级聚合阶段和FMs优势;Bilal等人(2023)研究受数据集特异性限制;
2025-05-08 11:21:25
986
原创 想通过病理切片分析肿瘤微环境,增强模型可解释性,那么这个经典的细胞核分割与分类模型一定要会复现!
文章提出的HoVer-Net,用于多组织组织学图像中细胞核的同时分割与分类,有效解决了传统方法面临的难题,推动了医学图像分析领域的发展。
2025-04-28 13:05:37
1052
原创 依赖于切片级标签,结合信息瓶颈理论,对弱监督病理切片分类模型进行微调
Task-specific Fine-tuning via Variational Information Bottleneck for Weakly-supervised Pathology Whole Slide Image Classification”由Honglin Li等人撰写。文章提出一种基于变分信息瓶颈的弱监督病理全切片图像分类任务特定微调框架,有效解决计算成本高和监督有限的问题,在多个数据集上提升了分类精度和泛化能力。研究背景。
2025-04-27 11:36:10
724
原创 无需细胞级标注,这个医学AI模型就能通过病理切片实现基因突变的预测
文章提出一种基于多实例学习(MIL)和集成技术的深度学习模型,可从急性髓系白血病(AML)的全切片图像(WSI)预测基因突变,为临床诊断提供支持。
2025-04-27 11:27:52
1119
原创 Medical Image Nnalysis发表对抗多实例学习框架,基于病理切片进行生存分析
AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images”提出了一种新的对抗多实例学习框架AdvMIL,用于基于全切片图像(WSI)的生存分析,能有效提升模型性能、利用无标记数据,并增强模型鲁棒性。作者类型姓名单位第一作者Pei Liu电子科技大学计算机科学与工程学院通讯作者Luping Ji电子科技大学计算机科学与工程学院。
2025-04-26 11:01:13
632
原创 Cancer Cell发表医学AI综述,聚焦于人工智能与转化癌症研究的交叉领域
New horizons at the interface of artificial intelligence and translational cancer research》由Josephine Yates和Eliezer M. Van Allen撰写。文章探讨了人工智能(AI)在癌症多组学分析和转化研究中的应用、挑战与机遇,指出AI有潜力推动精准肿瘤学发展,但在临床整合等方面仍面临难题。
2025-04-25 16:36:38
937
原创 Nature子刊聚焦于公开的医学AI基础模型,建立统一的评估标准
A clinical benchmark of public self-supervised pathology foundation models”发表于,通过构建临床基准数据集,系统评估了公共病理基础模型在多种临床相关任务上的性能,为模型训练和选择提供了重要参考。
2025-04-23 10:29:51
1183
原创 Medical Image Analysis发表医学AI模型,兼顾病理切片的上下文信息和高分辨率细节
文章提出HookNet,一种用于组织病理学全切片图像语义分割的多分辨率卷积神经网络模型,通过多分支结构有效结合上下文和细节信息,在乳腺癌和肺癌组织分割任务中展现优势,并提供代码和网络应用促进相关研究。__init__self,n_classes,depth=4,n_convs=2,):HookNet类继承自nn.Module,这是PyTorch中所有神经网络模块的基类。__init__方法是类的构造函数,用于初始化网络的各个组件。参数解释:n_classes:表示分割任务中的类别数量。
2025-04-19 17:00:00
795
原创 Nature子刊发表医学AI多模态融合亚型框架,能够融合处理放射组学、病理组学以及基因组学数据
这篇文章通过整合多模态数据,提出了一种新的胶质瘤亚型分类框架,为IDH野生型胶质瘤的精准治疗和预后判断提供了重要依据。
2025-04-18 15:18:05
1032
原创 哈佛团队在Cancer Cell发表多模态医学AI模型,整合病理切片和基因组特征,为癌症预后提供新思路
文章利用多模态深度学习整合 14 种癌症类型的全切片病理图像与分子特征数据,构建预后模型,通过对比单模态模型及分析模型可解释性,发现相关预后特征,开发出 PORPOISE 平台辅助研究,为癌症预后评估提供新方法与思路。
2025-04-18 11:50:52
1177
原创 多模态医学AI框架Pathomic Fusion,整合了组织病理学与基因组的特征
文章提出Pathomic Fusion框架,融合组织学和基因组特征,通过实验验证其在癌症诊断和预后预测方面的优势,为多模态生物医学数据的深度学习提供了新方法。研究背景:癌症诊断、预后和治疗反应预测依赖组织学和基因组数据,但现有方法存在局限性。组织学分析主观且存在观察者间差异,基因组分析无法精准区分肿瘤与非肿瘤细胞的基因变化。多模态深度学习虽发展迅速,但生物医学领域的融合策略尚待探索。研究方法Pathomic Fusion框架:创新性地融合组织学图像、细胞图和基因组特征。
2025-04-15 19:54:57
1267
原创 Nature子刊发表的这个医学AI模型,能够有效处理临床研究中的小数据集、稀疏特征和缺失数据
优势:Clinical Transformer预测更准确,可解释性强,能有效处理多种数据,挖掘特征关系,为临床研究提供见解。局限:存在计算限制,依赖数据质量,需大量相似特征患者预训练,且扰动分析可能存在“幻觉”。未来方向:探索新的位置编码机制,整合更多类型数据,如元数据和先验知识,以更好地理解疾病。数据资源(Data Resources)
2025-04-15 09:21:01
1000
原创 CLAM [特殊字符] StreamingCLAM,弱监督学习助力基底细胞癌诊断
这篇文章聚焦于医学AI在基底细胞癌(BCC)诊断领域的应用。BCC发病率的急剧上升给病理诊断工作带来沉重负担,传统诊断方式依赖大量人工标注,效率低下且容易出错。在此背景下,文章提出了一种基于弱监督学习的创新方法,旨在利用AI技术提升BCC诊断的效率与准确性。文章详细介绍了两种关键模型CLAM和StreamingCLAM,并对它们进行了深入对比。研究人员使用了大规模的数据集,包括5147张图像用于训练和验证,以及在内部949张图像、外部183张图像和公共测试集上进行测试。
2025-04-14 08:53:09
764
原创 能模仿病理学家工作流程的Vim架构,性能媲美ViT架构,小尺度下性能更优、大尺度下也具竞争力
Vim4Path: Self-Supervised Vision Mamba for Histopathology Images”一文主要研究了将Vision Mamba(Vim)架构应用于计算病理学中全切片图像(WSI)的表示学习,旨在解决因组织结构复杂和标记数据稀缺带来的挑战。研究背景:从千兆像素全切片图像进行表示学习在计算病理学中极具挑战。传统多实例学习方法依赖自然图像预训练模型,因病理图像与自然图像分布差异,效果欠佳。自监督学习(SSL)虽有发展,但编码器架构影响其性能。方法。
2025-04-12 12:29:26
879
原创 MIA发表病理AI模型HistoKernel,通过量化WSI间的分布相似性,实现药物敏感性的预测和生存分析
文章提出了一种创新的全切片图像(WSI)级最大平均差异(MMD)内核——HistoKernel,用于泛癌预测建模,在多个计算病理学任务中展现出优异性能,为该领域研究开辟了新途径。研究背景:计算病理学中,现有聚合技术在处理WSI分析任务时存在局限性,无法有效捕捉WSI中补丁集之间的整体分布差异。本研究旨在引入HistoKernel解决这一问题,推动计算病理学发展。研究方法:使用来自癌症基因组图谱(TCGA)的WSI数据、cBioportal的点突变数据、乳腺浸润性癌患者的药物敏感性数据等多种数据进行实验。
2025-04-09 10:09:48
858
原创 数字病理格式转换|vsi格式转为tif格式的方法
这个转换工具通过命令行界面(CLI)使用,主要功能是将 Olympus 细胞成像系统生成的VSI格式图像文件转换为通用的TIFF格式图像文件。最近星球里和交流群里,都有人提到vsi格式的转换问题,那么这期推文就介绍一个大概率可行的方法。为什么叫大概率可行呢?因为我用公开数据集测试是没有问题的,但是用星球用户的私有数据集时会卡住,无法筛选生成最后的tif文件,只有各层的文件。上图所示,是我挑选的palne12对应的tif,使用openslide打开后的缩略图。
2025-04-08 19:28:24
1085
原创 Nature Communications发表基于组织病理切片的 AI 模型,预测肾癌抗血管生成疗法效果
Histopathology based AI model predicts anti-angiogenic therapy response in renal cancer clinical trial”发表于,开发出一种基于组织病理学的深度学习模型,能从苏木精-伊红(H&E)染色切片预测血管生成评分(Angioscore),有效预测肾细胞癌抗血管生成治疗反应,为精准医疗提供了新方向。研究背景:转移性透明细胞肾细胞癌(ccRCC)治疗手段多样,但缺乏预测治疗反应的生物标志物。
2025-04-08 11:02:35
852
原创 深度挖掘Nature Medicine发表的病理AI基础模型,完成多分类模型的搭建,并进行可视化分析|项目复现
这段代码定义了一个自定义的数据集类,并使用该类创建了训练集和验证集的数据集对象,同时利用DataLoader对这两个数据集进行封装,以实现批量数据加载。更多内容,请见同名公众号/知识星球。
2025-04-07 09:24:08
954
原创 跟着教程复现了医学AI顶刊,却仍然看不懂代码,不会搭建模型?这期教程解决你的疑问!
本期教程使用的是4种天气图片数据集,名为“Multi - class Weather Dataset for Image Classification”。该数据集涵盖了4种不同的天气情况,分别是日出(sunrise)、晴天(shine)、阴天(cloudy)以及雨天(rain)。所有的图片都统一放置在名为“dataset2”的文件夹当中,并且每张图片的文件名称都清晰标注了其所属的天气类别,通过文件名就可以直接判断出该图片对应的天气类型。PS:数据集链接和源代码我会放在文末,大家付费阅读后即可获取数据!
2025-04-03 10:15:24
753
原创 以Nature子刊发表的这篇医学AI文章为例,分享一下如何深度解读一篇文献
(明天发)。文献速览这篇文章聚焦于此,开发出MSIntuit这一基于AI的临床预筛查工具,为解决难题提供新方向。它借助自监督学习从大量结直肠癌病理图像中提取特征,经多步骤优化,在600例患者独立数据集上完成盲法验证。研究结果显示,MSIntuit性能卓越。在不同扫描仪上表现稳定,敏感性高达0.96 - 0.98,
2025-04-01 21:58:04
1230
原创 这篇病理AI的一区文章,提出了四个全新且完全可解释的定量预后参数,并对比了基础模型的性能|Cell Reports Medicine
在医学AI领域,肺癌的精准诊疗一直是重点研究方向。这篇文章聚焦于非小细胞肺癌(NSCLC),开发了一个极具潜力的计算病理学平台。它基于大量高质量手动标注数据集,训练出高精度的多类组织分割算法,能精确分析H&E染色的全切片图像,为后续诊断、预后和预测算法的开发奠定了坚实基础。文章着重展示了该平台在两个关键下游应用的成果。一方面,训练并验证了NSCLC亚型分类诊断算法,在多机构、多扫描仪的国际队列中表现出色,准确性高,且优于部分基于基础模型和弱监督的方法。
2025-04-01 11:02:47
1086
原创 Nature发表哈佛团队关于生成式医学模型的最新研究,提倡“AI住院医师”模式
在医学领域,准确解读医学图像并生成报告对患者护理至关重要,但给临床专家带来沉重负担。多模态生成式人工智能(GenMI)为医学图像解读和报告生成带来新机遇,有望实现部分流程自动化。这篇3.26发表于Nature的文章,围绕GenMI在医学报告生成中的应用展开深入探讨,对从事医学AI研究的人员极具参考价值。文章首先阐述GenMI在医学报告生成方面的进展。传统医学报告生成框架多由视觉编码器和语言解码器构成,而基础模型的出现促使新型GenMI解决方案发展。
2025-03-28 10:23:49
830
原创 医学图像领域这么多公开数据集,我们如何在十分钟内彻底分析透彻其中一个,并利用于我们自己项目中?|个人观点
原始类别 ID原始类别名称合并后类别名称合并后 ID (论文)1other1223epithelial34epithelial35fibroblast46muscle474。
2025-03-28 10:11:23
857
原创 不到300例患者的研究,做了一个放射组学和病理组学的融合框架,就发表在一区|文献精析
本文旨在通过整合放射学和病理学数据,利用深度学习预测HPV相关口咽鳞状细胞癌(OPSCC)的预后,开发出Swin Transformer 为基础的多模态框架(SMuRF)。研究背景:HPV相关OPSCC发病率上升,现有分期系统虽区分HPV状态但患者仍面临生存挑战,仅依靠分子生物标志物存在局限性,而整合病理学和放射学信息可提供多尺度肿瘤洞察,此前多模态研究在该领域关注较少。
2025-03-28 08:35:44
719
原创 病理切片标签无法提取?临床信息无法获取?这篇文章教你如何一键导出切片标签!
前两天知识星球的服务器出了点问题,导致部分用户的提问无法回答,所以今天才开始陆续处理前几天堆积的问题。星球里有一个用户提出了一个问题,这个问题之前交流群也有人提出过,这次再次有人提出,我就想着写一段代码解决一下。首先声明,。我们先看一下预期效果——。根据我的理解,存在这个问题的人,首先是通过imagescop打开了手里的切片,发现有一个标签。但是,后续,现在想要通过代码批量提取这个标签。我为了节约调试时间,就用了三张切片做了一个测试,连带标签和方法倍率一起节选出来了。
2025-03-27 10:48:53
801
原创 哈佛团队最新研究动态表明,医学AI下一步关注点在于无监督模型以及基因表达数据的利用|个人观点
文章提出了一种基于转录组学引导的切片表示学习框架TANGLE,利用基因表达数据辅助学习全切片图像(WSI)的切片嵌入,在多下游任务中表现优异,为计算病理学研究提供了新方向。研究背景:自监督学习(SSL)在计算病理学中用于处理千兆像素的全切片图像时存在挑战,如构建切片“视图”计算成本高、学习视觉原语和不变性不明确、切片内异质性导致训练信号不一致等。受多模态视觉语言模型启发,研究团队利用基因表达数据指导切片表示学习。相关工作。
2025-03-25 10:12:54
1055
原创 多模态模型的多组学特征不会融合?这三篇文章能很好的解决你的问题|文献速递·25-03-24
研究背景与挑战医学图像分割是众多临床应用的前提,但主流方法存在获取高质量标注数据困难、因数字模态差异导致的域转移问题,限制了模型在不同任务和域间的可转移性。视觉基础模型虽在自然图像分割有潜力,但应用于医学图像面临医学与自然图像域差距大、难以自动生成高质量提示辅助分割两大挑战。相关工作预训练基础模型在自然语言处理和计算机视觉领域广泛应用,如BERT、GPT-4、CLIP、GLIP、DINOv2等,为下游任务提供有效参数初始化和特征表示。
2025-03-24 09:55:59
1015
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人