Orange3实战教程---学习器作为特征评分器

学习器作为特征评分器

某些学习器可在 Orange 中用作特征评分器。以下是一个使用随机森林(Random Forest)的简单示例。

我们以鸢尾花(iris)数据集为例。首先将文件与 Rank(特征排名模块)连接,然后将随机森林连接到 Rank。此时,随机森林将作为评分器使用。Rank 会利用随机森林计算的特征重要性对属性进行排序。

以下评分器同时适用于分类和回归任务:
● 逻辑回归(分类)/ 线性回归(回归)
● 随机梯度下降(Stochastic Gradient Descent)
● 梯度提升(Gradient Boosting)
● 随机森林(Random Forest)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值