Orange3实战教程:无监督---离群值检测

离群值检测

离群值检测小部件。

输入

  • 数据:输入数据集

输出

  • 离群值:被标记为离群值的实例
  • 非离群值:未被标记为离群值的实例
  • 数据:附加了“离群值”变量的输入数据集

该小部件支持以下四种离群值检测方法。所有方法均基于分类算法:

  1. 单类支持向量机(One-class SVM,使用非线性核函数 RBF):适用于非高斯分布的数据。
  2. 协方差估计器(Covariance Estimator):仅适用于高斯分布数据。
  3. 局部离群因子(Local Outlier Factor, LOF):通过计算局部密度偏差检测离群值,适用于中高维数据集。
  4. 孤立森林(Isolation Forest):通过随机选择特征和分割值来孤立异常点,适用于高维数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值