Orange3实战教程:无监督---主成分分析

PCA(主成分分析)

PCA 是对输入数据进行线性变换的降维方法。

输入

• 数据:输入数据集

输出

• 转换后的数据:经过 PCA 变换后的数据
● 成分:特征向量。

主成分分析(PCA)通过计算输入数据的线性变换实现降维。输出结果可以是变换后的数据集(包含实例的权重)或主成分的权重。

操作步骤

  1. 选择主成分数量:建议在覆盖足够方差的前提下选择尽可能少的主成分。也可以通过设置期望覆盖的方差百分比来自动确定数量。
  2. 归一化数据:勾选后,数据列将除以标准差以调整至统一量纲。
  3. 自动应用:勾选后,所有更改将自动生效;否则需手动点击“应用”。
  4. 保存图像:点击后可保存生成的图表至本地。
  5. 生成报告:生成分析结果报告。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值