PCA(主成分分析)
PCA 是对输入数据进行线性变换的降维方法。
输入
• 数据:输入数据集
输出
• 转换后的数据:经过 PCA 变换后的数据
● 成分:特征向量。
主成分分析(PCA)通过计算输入数据的线性变换实现降维。输出结果可以是变换后的数据集(包含实例的权重)或主成分的权重。
操作步骤
- 选择主成分数量:建议在覆盖足够方差的前提下选择尽可能少的主成分。也可以通过设置期望覆盖的方差百分比来自动确定数量。
- 归一化数据:勾选后,数据列将除以标准差以调整至统一量纲。
- 自动应用:勾选后,所有更改将自动生效;否则需手动点击“应用”。
- 保存图像:点击后可保存生成的图表至本地。
- 生成报告:生成分析结果报告。