欧拉函数

互质:设有两个数a和b,(a,b≥1),如果其最大公约数c = gcd(a,b)=1,则称a和b互质

求小于等于n的质数(埃拉托斯尼斯筛法)

int is_prime[maxn+1];
void getprime(ll n){
   int p = 0;
   for(int i = 0; i <= n; i++)
      is_prime[i] = 1;
   is_prime[0] = is_prime[1] = 0;
   for(int i = 2; i <= n; i++){
      if(is_prime[i]){
         prime[p++] = i;
         for(ll j = 2*i; j <= n; j+=i){
         	is_prime[j]=0;
            }
      }
   }
}

在数论中,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。

1.欧拉函数是积性函数——若m,n互质,  = (m - 1) * (n - 1)

2.特殊性质:当n为奇质数时,  

3.若n为质数则  

4. n = p * q , 则 φ(n) = (p - 1) * (q - 1)

欧拉函数的通项公式:φ(n) = n * (1-1/p1) * (1-1/p2) * (1-1/p3) * (1-1/p4) …..(1-1/pn) ,其中 pi 为 n 的质因数

一:直接求

long long euler(long long n){
	long long ans = n;
	for(int i = 2; i * i <= n; i++){
		if(n % i == 0){
			ans = ans / i * (i-1);
			while(n % i == 0){
				n = n / i;
			}
		}
	}
	if(n > 1){
		ans = ans / n * (n -1);
	}
	return ans;
} 

二:打表法

int phi[maxn];
void euler(){  
   for(int i = 2; i < maxn;i++){  
      if(!phi[i])  
      for(int j = i; j < maxn; j += i){  
         if(!phi[j]){
         	phi[j] = j;
            } 
         phi[j] = phi[j] / i * (i-1);  
      }  
   }  
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值