互质:设有两个数a和b,(a,b≥1),如果其最大公约数c = gcd(a,b)=1,则称a和b互质
求小于等于n的质数(埃拉托斯尼斯筛法)
int is_prime[maxn+1];
void getprime(ll n){
int p = 0;
for(int i = 0; i <= n; i++)
is_prime[i] = 1;
is_prime[0] = is_prime[1] = 0;
for(int i = 2; i <= n; i++){
if(is_prime[i]){
prime[p++] = i;
for(ll j = 2*i; j <= n; j+=i){
is_prime[j]=0;
}
}
}
}
在数论中,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。
1.欧拉函数是积性函数——若m,n互质, = (m - 1) * (n - 1)
2.特殊性质:当n为奇质数时,
3.若n为质数则
4. n = p * q , 则 φ(n) = (p - 1) * (q - 1)
欧拉函数的通项公式:φ(n) = n * (1-1/p1) * (1-1/p2) * (1-1/p3) * (1-1/p4) …..(1-1/pn) ,其中 pi 为 n 的质因数
一:直接求
long long euler(long long n){
long long ans = n;
for(int i = 2; i * i <= n; i++){
if(n % i == 0){
ans = ans / i * (i-1);
while(n % i == 0){
n = n / i;
}
}
}
if(n > 1){
ans = ans / n * (n -1);
}
return ans;
}
二:打表法
int phi[maxn];
void euler(){
for(int i = 2; i < maxn;i++){
if(!phi[i])
for(int j = i; j < maxn; j += i){
if(!phi[j]){
phi[j] = j;
}
phi[j] = phi[j] / i * (i-1);
}
}
}