Leetcode 1671. 得到山形数组的最少删除次数

本文解析了如何通过动态规划解决LeetCode题目1671,利用最长上升子序列的思想,找到数组变成山形数组所需的最少删除次数。核心算法涉及左右两侧的最长递增子序列长度计算,并找出中间最大值的删除策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:Leetcode 1671. 得到山形数组的最少删除次数

题意:

我们定义 arr 是 山形数组 当且仅当它满足:

  • arr.length >= 3
  • 存在某个下标 i (从 0 开始) 满足 0 < i < arr.length - 1 且:
    • arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
    • arr[i] > arr[i + 1] > ... > arr[arr.length - 1]

给你整数数组 nums​ ,请你返回将 nums 变成 山形状数组 的​ 最少 删除次数。

 

解题思路:

   如果只看左边或者右边,那么这就是一个典型的最长上升子序列,   两边同时看就是从两边开始的最长上升子序列

最终结果只需把中间的最大值的减去一次即可

class Solution {
public:
    int minimumMountainRemovals(vector<int>& nums) {
        int ans = 0, dp[1005], dp1[1005];
        int n = nums.size();
        memset(dp, 0, sizeof(dp));
        for (int i = 0; i < n; i++) {
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[j] < nums[i]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
        }
        for (int i = 0; i < n; i++) {
            cout << dp[i] << endl;
        }
        for (int i = n - 1; i >= 0; i--) {
            dp1[i] = 1;
            for (int j = n - 1; j > i; j--) {
                if (nums[j] < nums[i]) {
                    dp1[i] = max(dp1[i], dp1[j] + 1);
                }
            }
        }
        for (int i = 0; i < n; i++) {
            if (dp[i] > 1 && dp1[i] > 1) {
                ans = max(ans, dp[i] + dp1[i] - 1);
            }
        }
        return n - ans;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值