PAT (Advanced Level) Practice 1080 Graduate Admission

一、概述

以分数为第一优先,志愿为第二优先录取学生。

逻辑蛮麻烦,最开始理解错了题意,以为和高考一样,是先看第一志愿,再看第二志愿,没想到是先看分数,再看志愿。这导致浪费了很多时间。踩了不少坑,增加了许多经验。

二、分析

我只用了一个结构体,用来存储学生信息,学校信息本也可以用一个结构体的,我没用而是用一个二维数组代替。注意,二维数组过大,且在main函数中声明,会导致爆栈,抛出未经处理的异常,这时有两种方法解决,其一是在VS中更改工程属性,把默认堆栈保留大小变大点,但治标不治本,VS中不报错,oj中也会报段错误,实际上,只需要在main外声明数组即可。

由于我没有用结构体表示学校,因此用了许多数组。如下:

int schoolstu[100][40000] = { 0 };//放在main里会段错误,存储学生的ID
int school[100] = { 0 };
int schoolnow[100] = { 0 };
int schoollast[100] = { 0 };//每所学校招的最后一个人

分别储存各学校招的学生的初始序号,最大招生数量,目前招生数量和最后招的人。注意到一点,对结构体进行排序的话,结构体的初始序号最好另外保存一下,否则就会与排序后的角标弄混,该用初始序号的时候用当前角标,或者弄反,而且很难检查出来,我就是犯了这样一个错误,最开始没有用最后一个数组,而是直接用第一个数组中的元素对应,结果就出错了,很容易弄晕。

然后就是排序了,优先总分,其次是笔试分数,cmp可以这样写

bool cmp1(Student a, Student b)//总分排序
{
	if (a.sum != b.sum)
		return a.sum > b.sum;
	else if (a.GE != b.GE)
		return a.GE > b.GE;
	else return false;//不能返回0或者1或者true,会导致异常
}

注意这样写的时候最后返回的要是false,也可以这样写

bool cmp1(Student a, Student b)//总分排序
{
	if (a.sum != b.sum)
		return a.sum > b.sum;
	else 
		return a.GE > b.GE;
}

简单很多,推荐下面一种。

招生函数应该是最重要的了,如下,也是最容易出错的:

for (i = 0; i < N; i++)
	{
		for (n = 0; n < K; n++)
		{
			if (schoolnow[stu[i].choice[n]] < school[stu[i].choice[n]])//如果该学校还没招满
			{
				stu[i].admin = 1;//该学生被招入
				schoolstu[stu[i].choice[n]][schoolnow[stu[i].choice[n]]] = stu[i].ID;
				schoollast[stu[i].choice[n]] = i;
				schoolnow[stu[i].choice[n]]++;
				break;
			}
			else if (schoolnow[stu[i].choice[n]] >= school[stu[i].choice[n]]&& school[stu[i].choice[n]]!=0)//如果该学校刚好招满(只判断等于会有四个测试点过不去,加上大于有两个)
			{
				//if (stu[i].rank == stu
				//[
				//	schoolstu
				//		[stu[i].choice[n]]
				//	[school[stu[i].choice[n]] - 1]
				//].rank)//该学校招的最后一个学生名次和该生相同,因为schoolstu存储的是ID,所以不能这么写
				if(stu[i].rank == stu[schoollast[stu[i].choice[n]]].rank)
				{
					stu[i].admin = 1;//该学生被招入
					schoolstu[stu[i].choice[n]][schoolnow[stu[i].choice[n]]] = stu[i].ID;
					schoolnow[stu[i].choice[n]]++;
					break;
				}
			}
		}
	}

首先按总分排好序,这里就不赘述了,然后从第一名开始,从每个学生的第一志愿开始,看志愿学校招没招满,没招满就进该学校,修改对应数据,break;招满了就和最后招进去的一个人的排名对比,排名一样则你也进去,break;注意招满了的条件应该是当前学生大于等于最大招生,而且要保证最大值不为0,不能只有等于,那样不完全,也的确有可能有的学校不招生,都要考虑到。

最后输出即可。

三、总结

尽量不要有多层结构体嵌套,逻辑太难看清了,比如说这条逻辑错误的代码

if (stu[i].rank == stu
				[
					schoolstu
						[stu[i].choice[n]]
					[school[stu[i].choice[n]] - 1]
				].rank)
//这样分行写能好看点,但还是不清晰
//这样写
int m=stu[i].choice[n];
int n=school[m];
int k=schoolstu[m][n - 1];
if (stu[i].rank == stu[k].rank)
//虽然麻烦了点,但是可读性好得多

这在实际中是很有用的。

PS:代码如下:

#include<stdio.h>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>

//并不是志愿优先,而是分数优先,不然一号考生应录到学院2而不是学院5
//逻辑如下:先看分数最高的考生的志愿,优先报前面的志愿,报上了看考生二,也就是说,分高的三志愿也比分低的一志愿有竞争力

using namespace std;

struct Student
{
	int GE, GI;
	int sum;
	int choice[5] = { -1,-1,-1,-1,-1 };
	int rank = -1;
	int admin = 0;
	int ID;
}stu[40000];
int schoolstu[100][40000] = { 0 };//放在main里会段错误,存储学生的ID
bool cmp1(Student a, Student b)//总分排序
{
	if (a.sum != b.sum)
		return a.sum > b.sum;
	else if (a.GE != b.GE)
		return a.GE > b.GE;
	else return false;//不能返回0或者1或者true,会导致异常
}
bool cmpID(int a, int b)
{
	return a < b;
}
/*bool cmp2(Student a, Student b)//看第二三四五志愿
{
	if (a.admin != b.admin)
		a.admin < b.admin;
	else if (a.rank != b.rank)
		return a.rank < b.rank;
	else return false;
}*/

int main()
{
	int N, M, K;//总申请人数,总学校数,志愿数
	scanf("%d %d %d", &N, &M, &K);
	int i, j;
	int school[100] = { 0 };
	int schoolnow[100] = { 0 };
	int schoollast[100] = { 0 };//每所学校招的最后一个人
	for (i = 0; i < M; i++)
		scanf("%d", &school[i]);
	for (i = 0; i < N; i++)
	{
		scanf("%d %d", &stu[i].GE, &stu[i].GI);
		stu[i].sum = stu[i].GE + stu[i].GI;
		stu[i].ID = i;
		for (j = 0; j < K; j++)
			scanf("%d", &stu[i].choice[j]);
	}
	sort(stu, stu + N, cmp1);
	stu[0].rank = 0;
	for (i = 1; i < N; i++)
	{
		if (stu[i].sum == stu[i - 1].sum&&stu[i].GE == stu[i - 1].GE)
			stu[i].rank = stu[i - 1].rank;
		else
			stu[i].rank = i;
	}
	int n;
	for (i = 0; i < N; i++)
	{
		for (n = 0; n < K; n++)
		{
			if (schoolnow[stu[i].choice[n]] < school[stu[i].choice[n]])//如果该学校还没招满
			{
				stu[i].admin = 1;//该学生被招入
				schoolstu[stu[i].choice[n]][schoolnow[stu[i].choice[n]]] = stu[i].ID;
				schoollast[stu[i].choice[n]] = i;
				schoolnow[stu[i].choice[n]]++;
				break;
			}
			else if (schoolnow[stu[i].choice[n]] >= school[stu[i].choice[n]]&& school[stu[i].choice[n]]!=0)//如果该学校刚好招满(只判断等于会有四个测试点过不去,加上大于有两个)
			{
				//if (stu[i].rank == stu
				//[
				//	schoolstu
				//		[stu[i].choice[n]]
				//	[school[stu[i].choice[n]] - 1]
				//].rank)//该学校招的最后一个学生名次和该生相同,因为schoolstu存储的是ID,所以不能这么写
				if(stu[i].rank == stu[schoollast[stu[i].choice[n]]].rank)
				{
					stu[i].admin = 1;//该学生被招入
					schoolstu[stu[i].choice[n]][schoolnow[stu[i].choice[n]]] = stu[i].ID;
					schoolnow[stu[i].choice[n]]++;
					break;
				}
			}
		}
	}
	/*int n;
	for (n = 1; n < K; n++)
	{
		sort(stu, stu + N, cmp2);
		for (i = 0; i < N; i++)
		{
			if (stu[i].admin == 0)
			{
				if (schoolnow[stu[i].choice[n]] < school[stu[i].choice[n]])//如果该学校还没招满
				{
					stu[i].admin = 1;//该学生被招入
					schoolstu[stu[i].choice[n]][schoolnow[stu[i].choice[n]]] = stu[i].ID;
					schoolnow[stu[i].choice[n]]++;
				}
				else if (schoolnow[stu[i].choice[n]] == school[stu[i].choice[n]])//如果该学校刚好招满
				{
					if (stu[i].rank == stu[
						schoolstu
							[stu[i].choice[n]]
						[school[stu[i].choice[n]] - 1]
					].rank)//该学校招的最后一个学生名次和该生相同
					{
						stu[i].admin = 1;//该学生被招入
						schoolstu[stu[i].choice[n]][schoolnow[stu[i].choice[n]]] = stu[i].ID;
						schoolnow[stu[i].choice[n]]++;
					}
				}
			}
		}
	}
	*/
	for (i = 0; i < M; i++)
	{
		if (schoolnow[i] == 0)
			printf("\n");//换行前面不要加空格
		else
		{
			sort(schoolstu[i], schoolstu[i] + schoolnow[i], cmpID);
			for(j = 0; j < schoolnow[i] - 1;j++)
			{
				printf("%d ", schoolstu[i][j]);
			}
			printf("%d\n", schoolstu[i][j]);
		}
	}
}

 

逻辑斯蒂回归(Logistic Regression)是一种常用的分类算法,常用于二分类问题中,如预测研究生能否被录取。Kaggle的Graduate Admission数据集包含了申请人的各项信息,例如GRE分数、TOEFL分数、大学GPA、科研经验、推荐信等,目标变量通常是“是否被录取”(是否被研究生院接受)。 首先,我们来理解数据集属性的意义: 1. GRE Score: 研究生入学考试成绩 2. TOEFL Score: 英语水平测试得分 3. University Rating: 学校排名 4. SOP: Statement of Purpose(个人陈述)的质量 5. LOR: Letter of Recommendation(推荐信)的质量 6. CGPA: 学术平均绩点 7. Research: 科研经历(0或1) 8. Chance of Admit: 录取概率(这个不是原始数据,而是我们最终需要预测的目标) 数据预处理步骤主要包括: 1. **加载数据**:使用pandas库读取csv文件并查看基本信息。 2. **缺失值处理**:检查是否存在缺失值,并选择填充、删除或估算策略。 3. **编码分类变量**:将类别型特征转换成数值型,如使用one-hot encoding或者LabelEncoder。 4. **标准化或归一化**:对于数值型特征,通常会做数据缩放,如Z-score标准化或min-max归一化。 5. **划分训练集和测试集**:通常采用80%的数据作为训练集,剩余的20%作为测试集。 6. **特征工程**:如果有必要,可以创建新的特征或调整现有特征。 逻辑斯蒂回归的预测原理是基于sigmoid函数,该函数将线性组合后的输入映射到0到1之间,表示事件发生的可能性。模型学习如何调整权重系数,使得给定输入条件下,正类(如录取)的概率最大化。 实现过程(Python示例,假设使用sklearn库): ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 1. 加载数据 data = pd.read_csv('Admission_Predict.csv') # 2. 数据预处理 # ... 缺失值处理、编码、标准化等操作 # 3. 划分特征和目标 X = data.drop('Chance of Admit', axis=1) y = data['Chance of Admit'] # 4. 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 5. 特征缩放 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 6. 创建模型并拟合 model = LogisticRegression() model.fit(X_train_scaled, y_train) # 7. 预测 y_pred = model.predict(X_test_scaled) # 8. 评估模型性能 accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值