- 博客(440)
- 收藏
- 关注
原创 别再空谈数据价值!制造业如何用主数据管理 “抠” 出千万级成本?
凌晨三点,某汽车零部件厂的仓库还亮着灯 —— 管理员老张蹲在堆积如山的纸箱前,翻着皱巴巴的账本叹气:“这批不锈钢螺丝去年进了5000个,现在还剩3000个没动,再过半年就过期了,又要当呆滞料处理……”而办公室里,采购经理李姐正对着电脑发愁:“明明是同一家供应商,销售部走的是‘XX五金’,生产部写的是‘XX金属’,两个编码导致采购量分散,根本谈不下来低价……”生产线旁,主任王哥急得直跺脚:“刚才发的物料编码错了,和图纸对不上,现在停线等着换料,每停一分钟损失2000 块……”
2025-10-15 10:01:41
936
原创 装备制造企业支撑智能制造的全生命周期数据治理实践
国务院《十四五智能制造发展规划》明确将数据要素列为智能制造的核心生产资料,提出 “加快构建覆盖产品全生命周期的数据治理体系,推动数据从资源向资产转化,支撑AI大模型、数字孪生等新技术应用”。某装备制造企业(以下简称H公司)携手亿信华辰,开启了一场以数据中台为核心,全生命周期数据治理为路径,支撑智能制造大模型应用的实践。
2025-09-19 16:23:29
1058
原创 电力行业数字化转型破局:从数据治理到智能应用的全链路解决方案
在双碳目标与数字中国战略的双重驱动下,电力行业正加速从传统基建向数字基建转型 —— 从发、输、变、配、用全链条的数据采集,到设备状态监测、用户用电行为分析,数据已成为电力企业的核心资产。然而,等问题,却成为数字化转型的拦路虎,让海量数据陷入沉睡,无法转化为业务价值。
2025-09-19 16:11:08
790
原创 电力数据治理:从数据碎片到价值金矿的转型密码
当某省级电力公司的数据分析团队第 N 次对着 12 个业务系统的异构数据叹气时,当供电局客服因计量数据错误被用户第 3 次投诉时,当电网调度中心因数据延迟没赶上负荷高峰调整时 ——电力行业的数字化转型,正卡在 “数据” 这个看似基础却致命的环节上。它不是锦上添花的技术投入,而是 破局转型的必经之路 —— 就像盖房子,数据治理是地基,没有结实的地基,再高的楼房也会塌。某供电局的实践证明:数据治理后,数据准确率从 75% 提升到 98%,用户因数据错误的投诉率下降 25%。
2025-08-28 15:49:40
933
原创 亿信华辰助力矿冶公司主数据管理系统建设
在双碳目标与产业升级的双重驱动下,某矿冶公司(以下简称 “K公司”)正加速推进数字化转型。然而,随着业务规模的扩张与多系统协同需求的增加,集团面临主数据分散、标准不统一、流程不规范等核心问题 —— 人员、物料、客商等关键数据在不同业务系统中重复编码、属性定义冲突,导致跨部门协作效率低下,数据资产价值难以释放。K公司携手亿信华辰,启动主数据管理系统建设,通过构建 “体系 - 平台 - 流程” 三位一体的主数据管理能力,为集团数字化转型筑牢数据根基。
2025-08-27 15:04:52
889
原创 主数据与数据中台的关系,终于有人讲清楚了
主数据(标准身份) + 数据中台(价值转化) =企业数据的资产化当你再遇到 “数据中台没用”“主数据是不是重复建设” 的疑问时,不妨回到这个公式 ——不是数据中台没用,是你没给它 “好食材”;不是主数据没必要,是你没让它 “变成钱”。数据化建设的本质,从来不是买系统、上平台,而是 “让数据从‘散沙’变成‘砖块’,再用‘砖块’盖出‘能住人的房子’”。而主数据,就是那 “最结实的砖”;数据中台,就是那 “会盖房子的工匠”—— 两者携手,才能让数据真正成为企业的核心资产。
2025-08-22 10:26:45
721
原创 从0到1搭建企业主数据体系,看这篇就够了
根据《主数据管理:企业数据化建设基础》一书的定义,主数据是跨系统、跨业务的核心数据,是企业数据资产的骨架。它具有三大特性:唯一性:一个业务实体(比如 “张三客户”)只有一个唯一编码;一致性:同一主数据在所有系统中的定义、格式一致;稳定性:不会频繁变动(比如客户的统一社会信用代码)。主数据的范围覆盖企业核心业务领域,比如客商、产品、员工、资产、财务科目等 —— 这些数据是企业开展数据分析、业务协同的基础语言。
2025-08-19 15:32:16
944
原创 智能制造要聪明,先让数据说同一种话:主数据标准化的3个核心动作
某汽车制造企业的生产车间里,曾上演过这样荒诞的一幕:PLM系统里标注为 “2023-A-001” 的车门总成,在ERP系统中被记作 “C-DOOR-202301”,到了 MES 系统又变成 “MFG-DR-001”—— 三个系统对同一物料的编码截然不同。结果,生产计划员按MES的编码下单时,ERP显示 “无库存”;采购部门按PLM的编码订货,仓库却因物料码不匹配无法入库。这不是个例。
2025-08-19 15:20:51
592
原创 工厂里的数据孤岛有多坑?从物料编码打架看主数据的底层逻辑
某机械制造企业的车间里,生产主管老张急得直跺脚 ——MES系统显示 “可生产” 的物料,在ERP系统里却查无此号。原来,研发部门用 “W-202403-A” 给新物料编码,生产部门按 “WL-202403-01” 录入MES,财务部门又用 “MATERIAL-202403-001” 同步到ERP。三个系统三套编码,导致物料实际库存无法匹配,生产线被迫停摆48 小时,直接损失超50 万元。这样的场景,在制造业并非个例。当车间系统割裂成为常态,数据孤岛就像看不见的生产杀手,而破解这一困局的关键,正是被称为企业数
2025-08-19 15:10:29
620
原创 数据治理不是越严越好!企业放宽3项规则,数据利用率反而涨了40%
某连锁食品零售企业曾因客户地址必填规则苦恼 —— 系统要求注册会员必须填写精确到门牌号的地址,否则无法完成流程。结果,30%的新客因嫌麻烦放弃注册,会员数据库里虽躺着完整的地址数据,却因覆盖量不足,营销活动的精准推送率始终卡在15%。直到企业尝试放宽规则:允许填写 “省 + 市” 或 “附近地标” 的模糊地址,结合LBS定位补充信息,3 个月后数据利用率暴涨40%,会员营销响应率提升至 35%。这一案例,撕开了传统数据治理越严越好的认知误区。
2025-08-19 15:03:57
583
原创 从数据混乱到高效协同!亿信华辰助力食品加工企业打通主数据管理任督二脉
主数据是企业的数字身份证,标准化是关键。亿信华辰团队梳理出客户、供应商、物料、人员等14 类核心主数据,制定《主数据标准规范》,明确:唯一性:物料需通过 “编码 + 名称 + 规格” 三重校验,杜绝 “一物多码”;共享性:客户信息在 CRM、OMS、TMS 中统一同步,避免重复录入;稳定性:主数据属性(如供应商资质)仅允许通过审批流程修改,确保业务引用的一致性;有效性:建立主数据生命周期管理,对停用数据标记 “归档”,避免干扰现行流程。
2025-08-15 17:59:09
997
原创 亿信华辰推出企业级AI数智平台,以智能体为核心,开启企业数智化新范式
在数字经济与大模型技术深度融合的今天,企业数智化转型已从可选动作变为必答题。然而,数据孤岛、分析效率低、决策依赖经验等痛点,仍让许多企业在转型中举步维艰。作为智能数据全生命周期产品与服务提供商,亿信华辰推出的,以 “数据 + 知识” 双轮驱动为核心,通过低门槛智能体搭建、全链路智能化治理与分析能力,为企业数智化转型注入新动能。
2025-08-15 15:32:16
1307
原创 数据治理不是买软件!花百万买工具,却栽在这套流程上
据Gartner调研,超70%的企业在数据治理投入中,60%以上预算用于工具采购,却仅有15%的项目能达到预期效果。问题的根源,就藏在 “重工具轻流程” 的致命误区里。
2025-08-08 16:10:42
900
原创 数据治理不是技术活!业务部门才是治理第一责任人
某城商行的实践颇具参考价值,在财务数据治理中,财务部门提出 “所有费用报销需关联项目编号,且项目编号需与OA系统立项信息一致” 的规则,IT部门据此开发了 “报销系统 - 项目管理系统” 数据校验接口,当录入的项目编号在OA中无对应记录时,系统自动拦截并提示 “项目未立项”。当业务部门从数据使用者转变为 “数据生产者 + 规则制定者”,IT 部门从 “背锅侠” 升级为 “工具赋能者”,财务部门从 “事后核算” 进化为 “价值引导者”,数据治理才能真正释放生产力。从CEO视角拆解:数据治理的三角协作模式。
2025-08-08 16:05:57
403
原创 从功能堆砌到需求匹配,数据治理工具选型为何总踩坑
在企业数字化转型浪潮中,数据治理已从可选动作变为必选项。然而,许多企业在工具选型时陷入功能清单陷阱—— 盲目追求大而全的功能列表,或因预算限制选择单一工具,最终导致治理效果与预期相差甚远。本文将结合行业实践,对比传统单一工具与一体化平台的核心差异,提出 “需求优先级排序法”,并附选型评估表,助企业找到匹配度公式。
2025-08-08 11:43:11
579
原创 央企标杆实践:搭建7大主数据域,多业态集团主数据管理体系迈入新时代
在数字经济高速发展的背景下,集团型企业的数字化转型已从单点突破转向全局协同。某央企(以下简称C集团)作为覆盖电子信息制造、软件服务、新兴产业等多领域的大型集团,面对多业态集团数据协同的复杂挑战,选择与亿信华辰紧密协作,围绕标准化、一体化、可扩展的核心目标,完成了集团级主数据管理从需求调研到系统上线的关键跨越,其主数据管理从分散粗放迈入集中标准化的3.0时代。作为项目核心技术服务商,亿信华辰深度参与了从需求调研到系统上线的全周期建设,以 “技术适配 + 管理创新 + 业务赋能” 的三维能力,助力企业构建了覆盖
2025-08-08 10:57:42
1080
原创 央国企数智化转型的必由之路:解码数据治理的战略价值与实践路径
2025 年 2 月,国务院国资委党委在《加快推进国资央企高质量发展为完成经济社会发展目标任务提供有力支撑》中明确提出,要大力实施国有企业数字化转型行动计划和 “AI+” 专项行动,加速智改数转。这一政策信号背后,数据治理的重要性被提升至前所未有的高度 —— 无论是 AI 大模型应用的落地、数据资产的激活,还是 DCMM(数据管理能力成熟度评估)的达标、国企数字化转型的深化,都绕不开 “数据治理” 这一核心命题。
2025-07-31 14:07:46
1252
原创 数据治理效果怎么看?除了报表,这5个隐性指标更关键
你是否遇到过这样的场景?数据治理项目验收时,“质量达标率 95%”“合规检查通过率100%” 的报表光鲜亮丽,但业务部门仍抱怨 “数据不好用”,管理层决策时还是更依赖经验?这说明 —— 传统的显性指标,可能正在掩盖数据治理的真实价值。真正的治理成效,不应只看数据 “是否干净”,更要看数据 “是否被用活”。本文将跳出 “质量达标率”“合规检查通过率” 等传统视角,结合某制造企业的实战案例,拆解 5 个更能反映数据治理 “业务渗透力” 的隐性指标,帮你重新定义治理效果的评估逻辑。
2025-07-31 11:32:26
547
原创 数据治理不是部门战!用一张数据责任图,让财务部和生产部抢着管数据
生产部说数据是系统自动采集的,不归他们管;财务部说数据对不上账是源头没校准,双方吵了三个月,最后连集团战略会上的经营分析报告都卡壳了。” 某央企数据治理负责人李总至今对两年前的场景记忆犹新。当时,这家覆盖能源、制造等多业务的央企正面临数据治理的部门墙难题——设备运行数据、成本核算数据、生产损耗数据等核心业务数据质量达标率仅58%,各部门互相推诿 “数据责任”,导致跨部门协作效率低下,集团决策多次因 “数据打架” 陷入被动。
2025-07-31 11:03:33
983
原创 数据治理不是烧钱!某制造企业晒账单:3年省出2个IT部门预算
去年因物料编码混乱导致的客诉赔偿超200 万,重复取数的IT人力成本每年吃掉 150万 —— 这是我们数据治理前的真实账单。” 某集成电路制造企业CIO张总翻开财务报表,指着密密麻麻的数字感叹,“过去总觉得数据治理是‘烧钱工程’,直到3年后我们用账单证明:治理投入,才是最划算的长期投资。
2025-07-31 10:51:21
914
原创 主数据管理:从数据混乱到全局统一的企业数字化破局之路
在企业数字化转型的浪潮中,“数据” 早已从后台支撑角色跃升为核心生产要素。但你是否注意到:同一物料在不同系统中被赋予不同编码(一物多码)、客户信息因录入标准不一导致重复冗余、供应商数据分散在多个业务系统中难以协同…… 这些 “数据乱象” 正成为企业高效运营的隐形障碍。而解决这些问题的关键,正是被称为 “企业数据底座” 的主数据管理。
2025-07-25 14:55:05
548
原创 数字经济时代下的国资监管新范式:从数据治理到价值跃升的实践路径
在百年未有之大变局下,国有企业作为国民经济的 “压舱石”,正面临着 “科技创新主力军” 与 “国家战略承接者” 的双重使命。随着《全国性国资国企在线监管系统建设工作方案》的出台,以及福建、广东等省份率先开展的数字化转型实践,国资监管已从传统的 “人工核查”“报表汇总” 模式,加速向 “数据驱动、智能决策” 的新范式演进。本文将结合某省国资监管实践与典型案例,深度解析国资监管的核心逻辑与落地路径。
2025-07-23 14:59:07
1511
原创 Data For AI 时代,高质量数据集的破局之道在于数据治理建设
这些问题直接导致 AI 项目陷入 “投入大、见效慢” 的困境:某制造企业曾投入数百万元开发工艺优化模型,却因设备数据采集标准不统一,模型准确率不足50%;某零售企业尝试用AI预测用户需求,却因会员数据与交易数据未打通,预测偏差率高达40%。可见,没有高质量的数据治理,AI 只能是 “空中楼阁”。数据治理:高质量数据集的全生命周期护航者数据治理不是简单的数据清洗或数据整合,而是围绕 “数据可用、数据可信、数据可管” 构建的一套系统性工程。
2025-07-23 11:06:26
690
原创 看电网公司如何打造企业级报表“智能中枢”
在电力行业数字化转型的浪潮中,如何让分散在各业务系统的数据 "活起来",让报表从手工填报走向自动生成,是每一家电网企业的必解命题。作为国家电网系统内首批试点单位,国网某省电力公司联合亿信华辰历时两年打造的企业级报表平台,用一套“自动生成 + 自助分析 + 线上补录”的组合拳,交出了一份亮眼的数字化转型答卷。
2025-07-23 10:59:13
607
原创 数据治理蓝图设计:先定3 个 1——1 个目标、1 套标准、1 张路线图
数据治理蓝图设计的本质,是为企业 “画一张能走通的地图”。通过 “1 个目标拆解法” 明确方向、“1 套标准体系” 规范路径、“1 张分阶段路线图” 控制节奏,企业才能避免为治理而治理的陷阱,真正让数据从资源变为资产,从成本变为价值。亿信华辰将持续以实战经验为支撑,助力企业在数据治理赛道上 “走得稳、跑得远”。
2025-07-23 10:44:27
1117
原创 数据治理≠买工具!90%企业踩过的3大认知误区
数据不真实、不准确、不共享,正成为企业数字化转型的 “隐形杀手”—— 某集成电路企业因数据问题增加经营风险,某商用车集团因数据膨胀面临治理压力…… 越来越多企业意识到数据治理的重要性,却在实践中陷入“买工具就能解决问题” 的迷思。,甚至有67%企业因流程缺失导致工具闲置。本文结合真实案例与行业洞察,拆解误区并给出纠偏建议,助你避开治理 “坑点”。
2025-07-23 10:31:52
1039
原创 数据治理投入ROI怎么算?某银行用3年数据证明:每1元投入换回8元业务价值
数据治理到底值不值?投 100 万,能赚回来吗?” 这是某城商行信息科技部负责人在2020年启动数据治理项目时,反复追问团队的问题。当时,该行面临数据分散、质量参差不齐的困境 —— 客户信息 “一客多号” 导致营销重复触达,信贷数据字段缺失引发风控误判,财务报表人工核对耗时耗力…… 但面对每年超 500 万的治理投入预算,管理层始终对 “回报” 存疑。
2025-07-23 10:21:25
929
原创 数据治理不是IT的事!某集团CEO亲述:为什么要把数据治理写进年度战略?
某商用车集团的数字化转型曾陷入一个怪圈:IT 部门投入大量资源清洗数据、搭建平台,却总被业务部门抱怨 “数据不准、用不上”;业务部门指责 IT “技术不行”,IT 部门反驳 “源头数据乱,巧妇难为无米之炊”。直到集团 CEO 在年度战略会上拍板:“数据治理不是 IT 的事,必须写进年度战略,我亲自挂帅!这场变革背后,是制造业数据治理的深层痛点 —— 当数据从 “支撑工具” 升级为 “战略资产”,传统 “IT 背锅” 的模式已无法应对数据膨胀、跨部门协作、价值释放等复杂挑战。
2025-07-16 16:11:25
574
原创 企业AI项目避坑指南:从0到1落地的5大关键防线
半年过去了,年初那些以AI之名的项目到底怎么样了?很多企业一谈AI,就觉得是IT部门的事。事实上,AI项目的成败,根子永远在战略层。战略上想不清楚,后面的执行越努力,可能错得越离谱。今天小亿就来聊聊可能会遇到哪些坑,帮你避开那些“雷区”。
2025-07-16 10:53:14
925
原创 从被动响应到主动洞察,亿信华辰Data Agent如何重塑企业决策力
传统数据分析工具依赖IT人员的报表开发或业务人员的手动操作,效率与灵活性的瓶颈日益凸显。而随着大模型技术的突破,。亿信华辰推出的Data Agent-智问BI@GPT,正是这一趋势下的典型代表 —— 通过零代码+AI+数字人的深度融合,重新定义了企业数据应用的边界。
2025-07-16 09:57:29
1043
原创 亿信华辰赋能大学教务数据分析实战记
经过市场调研与功能验证,B 大学最终选择亿信华辰ABI一站式数据分析平台作为核心工具。丰富的可视化能力:支持 100 + 图表类型(如热力图、动态仪表盘),满足教学资源分布、学生成绩趋势等多场景展示需求;强大的数据分析功能:内置多维分析、钻取联动、智能预警等功能,可快速响应 “按院系 / 时间 / 年级对比” 等复杂分析需求;安全的权限管理:支持按角色(如教务处领导、院系教学秘书)分配数据查看权限,确保核心教学数据的合规使用。
2025-07-09 11:39:38
1292
1
原创 大模型时代:数据治理与人工智能的双向赋能闭环
大模型并非 “来者不拒”—— 低质、违规或伦理敏感的数据可能导致模型输出偏差,比如文生图模型因 “坏数据” 生成不当内容。数据治理需在语料层面明确数据边界,通过法律、伦理、合规的多维度筛选,确保输入大模型的数据 “干净且可用”。这种治理不仅提升模型效果,更规避了技术滥用风险。
2025-07-02 11:27:25
570
原创 解锁数据价值:企业数据资产化实施框架
数据资产流通范围更广,指通过数据资产的开放、共享、交易等形式,使数据在组织内部或组织间流转,为企业生产经营或个人提供便利,或是通过一定的合同契约、市场机制进行约束,进而产生相应的社会和经济效益,其目的在于促使数据在组织内外的流转和价值实现。数据产品是指对数据资源投入实质性加工(如分析、建模)或创造性劳动(如算法开发、应用设计)所形成的,可以满足内外部用户需求的,并能以数据内容为核心提供持续服务的、可辨认的服务形态。数据价值评估是数据资产管理的关键环节,构建了数据资产化的价值基线。
2025-06-18 14:11:53
1474
原创 某投资公司主数据管理破茧成蝶,构建统一数据基石
项目不仅有效解决了长期存在的数据管理顽疾,实现了数据的“统一源头、统一标准、统一管理、统一服务”,更显著提升了企业的数据质量、运营效率和协同能力,释放了数据资产的核心价值,为企业的数字化转型和智能化决策提供了强有力的支撑。面对上述挑战,该投资公司携手亿信华辰,明确了主数据管理项目的核心目标:通过建立统一的主数据管理平台和规范,打通各业务系统壁垒,构建协作高效的企业级数据体系,全面提升运营管理水平和决策支持能力。依据已制定的主数据标准(供应商、项目、课题、组织、人员等),亿信华辰成功搭建主数据管理平台。
2025-06-11 11:48:44
569
原创 打造银行数字化底座:数据治理+分析+报送的一体化实践
亿信华辰的数据治理解决方案,从银行实际需求出发,深度融合数据标准管理、元数据管理、数据质量管理、数据模型管理等核心功能,并涵盖数据资产管理和数据安全管理模块,满足行业标准的访问控制要求。方案结合银行具体情况,围绕分类分级、管理与应用等核心需求,搭建全域数据分类管理框架,实现数据资源的可视化与精细化管理,最终形成统一的数据资产目录。亿信华辰提供的“全栈式”数智服务,覆盖数据采集、加工、存储、治理、安全、分析到应用的全生命周期,旨在助力银行构建坚实的数字化底座,实现全方位数智化转型。亿信华辰金融行业解决方案。
2025-06-11 11:39:41
783
原创 解读《数字中国建设2025年行动方案》
2025年5月,国家数据局印发《数字中国建设2025年行动方案》(以下简称《行动方案》),为今年数字中国建设下达“任务书”、绘就“施工图”,明确了阶段性目标与实施路径。“东数西算”工程和算力互联网试验网的实施,将优化全国算力资源布局,降低企业用算成本30%以上,同时推动西部数据中心集群建设,形成“算力西移、数据东流”的协同发展格局。《行动方案》部署了体制机制创新、地方品牌铸造、“人工智能+”、基础设施提升、数据产业培育、数字人才培育、数字化发展环境优化、数字赋能提升等8个方面的重大行动。
2025-06-04 11:23:19
1406
原创 解码高质量数据集炼金术,打造AI时代的超级燃料
数据集的质量影响人工智能的“智商”,近期发布的深度求索系列模型训练中,大量使用了高质量推理数据集,凸显了高质量数据的重要性,“大模型与垂直领域深度融合,同样也需高质量数据集的支撑。建设高质量数据集并非一蹴而就, 全国数据标准化技术委员会发布《高质量数据集建设指南(征求意见稿)》中提出, 高质量数据集建设应按照生命周期有序展开,包括数据需求、数据规划、数据采集、数据预处理、数据标注、模型验证等6个阶段。企业、科研机构和政府应重视数据治理,建立标准化流程,持续优化数据质量,以充分发挥数据的价值。
2025-06-04 11:05:27
645
原创 某标杆房企BI平台2.0升级实践
亿信华辰携手某头部地产集团,以“数据资产体系化、数据应用平民化、数据平台智能化”为建设目标,从工具、指标、数据、应用四大层面进行BI平台的优化升级,覆盖项目分别面向业务用户、开发人员的自助分析、分析报告、指标管理、报表开发4个业务场景。经营决策层面,BI预警引擎与集团经营例会机制深度融合,每月自动生成带风险标记的董事会报告,重点标注现金流承压、存货周转异常等项目,使管理层决策响应速度提升50%,数据驱动的战略调整占比从35%攀升至82%。用户可按业务主题、管理维度等多角度穿透查询,告别“指标迷宫”。
2025-05-28 11:39:03
861
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅