浅谈隐私计算

1.隐私计算概述

        隐私计算是指在保护数据本身不对外泄露的前提下,实现数据的计算和分析的一系列信息技术。随着数据成为重要的生产要素,数据的流通与融合需求日益增长,但数据隐私安全问题也愈发突出。隐私计算技术旨在平衡数据的价值挖掘与隐私保护,为数据的安全使用提供解决方案。

隐私计算涉及到多个主要的关键技术:

  1. 多方安全计算:基于密码学原理,允许多个参与方在不泄露各自私有数据的情况下,协同计算某个函数。各方将各自数据进行加密或秘密分享,通过一系列密码学协议完成计算,最终得到正确的计算结果,同时任何一方无法获取其他方的原始数据。例如,在多方联合统计数据总和的场景中,各方对自己的数据进行秘密分享,然后按照协议进行计算,最终汇总得出总和,而各方数据始终保密。
  2. 联邦学习:一种分布式机器学习技术,多个参与方在不交换原始数据的前提下,协同训练一个共享模型。根据数据特点分为横向联邦学习、纵向联邦学习和联邦迁移学习。横向联邦学习适用于参与方数据特征相似但样本不同的情况;纵向联邦学习则针对样本重叠但特征不同的场景;联邦迁移学习用于解决样本和特征都不同的跨领域数据合作问题。在联邦学习过程中,各方在本地利用自身数据训练模型,然后将模型参数(如梯度)上传至中心服务器进行聚合,更新后的全局模型再下发给各方继续训练。
  3. 同态加密:允许在加密数据上进行特定类型的计算,计算结果解密后与在明文上进行同样计算的结果相同。例如,对加密后的数字进行加法或乘法运算,解密后得到的结果等同于对明文数字进行相应运算的结果。这使得数据在加密状态下就可以进行处理,无需解密,从而保证数据隐私。同态加密基于一些复杂的数学难题,如大整数分解、离散对数等构造加密算法。

2.应用场景

隐私计算在金融、医疗、政务、互联网等用户场景下,能够保证多方数据交换的同时,保证用户的隐私信息。主要的应用领域详细如下:

2.1.金融

  1. 联合风控:不同金融机构(如银行、保险公司等)拥有各自的客户数据,但出于数据隐私和合规要求,不能直接共享数据。通过隐私计算技术,各方可以在不泄露客户敏感信息的前提下,联合构建更准确的风险评估模型。例如,银行可以利用自身掌握的客户信用记录,与保险公司提供的客户保险理赔数据,基于多方安全计算或联邦学习技术,共同分析客户的违约风险,提高风控的准确性和效率。
  2. 反洗钱监测:多个金融机构可以借助隐私计算实现数据的协同分析,共同监测可疑的资金流动模式。由于反洗钱需要整合多方数据进行全面分析,而各机构的数据包含客户隐私信息,隐私计算技术能够在保护数据隐私的同时,实现数据的有效整合与分析,提升反洗钱监测的效果。

2.2.医疗

  1. 多中心联合研究:不同医疗机构拥有各自的患者病例数据,为了开展大规模的医学研究,如疾病的病因分析、治疗方案优化等,需要整合这些数据。但患者的个人信息和医疗数据涉及高度隐私,不能随意共享。通过联邦学习等隐私计算技术,各医疗机构可以在本地利用自身数据训练模型,然后协同更新全局模型,从而在不泄露患者隐私的情况下,实现多中心的联合研究,推动医学科学的发展。
  2. 精准医疗:结合患者的基因数据、临床症状、治疗历史等多源数据可以实现精准医疗。然而,这些数据分布在不同的机构,如基因检测公司、医院等。隐私计算技术可以使这些机构在保护数据隐私的前提下,共同分析患者数据,为患者提供更精准的诊断和治疗方案。

2.3.政务

  1. 数据共享与协同治理:不同政府部门(如税务、社保、公安等)拥有各自的业务数据,为了提升社会治理效率和服务质量,需要跨部门的数据共享与协同。例如,在城市规划中,需要综合考虑人口分布(公安部门数据)、经济活动(税务部门数据)、基础设施建设(建设部门数据)等多方面信息。隐私计算技术能够在保护各部门数据隐私的同时,实现数据的共享和协同分析,支持政府制定更科学合理的政策。
  2. 智慧城市建设:在智慧城市建设中,涉及交通、能源、环境等多个领域的数据融合与分析。例如,通过整合交通流量数据、能源消耗数据和环境监测数据,利用隐私计算技术可以实现对城市运行状况的全面监测和优化,提高城市的智能化管理水平,同时保护各领域数据的隐私安全。

2.4.互联网

  1. 个性化推荐:互联网平台拥有大量用户的行为数据,如浏览记录、购买历史等,这些数据包含用户隐私。为了提供更精准的个性化推荐服务,平台可以与其他数据提供商(如广告商、内容提供商)合作,但需要保护用户数据隐私。通过隐私计算技术,各方可以在不泄露原始数据的情况下,协同分析用户特征,实现更精准的个性化推荐,提升用户体验和平台的商业价值。
  2. 数据交易市场:随着数据经济的发展,数据交易市场逐渐兴起。数据所有者希望通过出售数据获取价值,但又担心数据泄露带来的风险。隐私计算技术可以为数据交易提供安全保障,使数据在加密或隐私保护的状态下进行交易和使用,数据需求方可以在不获取原始数据的情况下,基于隐私计算技术对数据进行分析和利用,促进数据的合法流通和价值实现。

3.技术原理

3.1多方安全计算(Secure Multi-Party Computation,MPC)

多方安全计算允许多个参与方在不泄露各自数据的前提下共同计算一个目标函数。例如,在一个联合统计场景中,各方想计算数据总和,但不想暴露自己的数据。

技术原理:通过秘密分享、混淆电路、不经意传输等密码学原语,将计算任务拆分成多个子任务,各方分别执行自己的子任务,最终汇总结果得到目标计算结果,且任何一方都无法获取其他方的原始数据。

Python 代码示例(简单秘密分享求和)

import random

def share_secret(secret, n, t):

shares = []

coefficients = [random.randint(1, 100) for _ in range(t - 1)]

for i in range(1, n + 1):

share = secret

x = i

for j, coefficient in enumerate(coefficients):

share += coefficient * (x ** (j + 1))

shares.append(share)

return shares

def reconstruct_secret(shares, t):

result = 0

for i, share1 in enumerate(shares[:t]):

x1 = i + 1

numerator = 1

denominator = 1

for j, share2 in enumerate(shares[:t]):

if i!= j:

x2 = j + 1

numerator *= -x2

denominator *= (x1 - x2)

result += share1 * (numerator / denominator)

return result

# 示例使用

secret = 100 # 假设的秘密数据

n = 5 # 分享份数

t = 3 # 最少恢复份数

shares = share_secret(secret, n, t)

recovered_secret = reconstruct_secret(shares, t)

print(f"原始秘密: {secret}, 恢复的秘密: {recovered_secret}")

3.2联邦学习(Federated Learning,FL)

联邦学习是一种分布式机器学习技术,多个参与方在不交换原始数据的情况下协同训练模型。主要分为横向联邦学习(特征相似,样本不同)、纵向联邦学习(样本相似,特征不同)和联邦迁移学习(样本和特征都不同)。

技术原理:在横向联邦学习中,各方在本地训练模型,然后上传模型参数(如梯度),中心服务器聚合这些参数得到全局模型,再将全局模型下发给各方继续训练。

Python 代码示例(简单横向联邦学习使用 TensorFlow Federated)

首先确保安装 tensorflow_federated 库:

pip install tensorflow_federated

代码示例:

import tensorflow as tf

import tensorflow_federated as tff

# 模拟本地数据集

def create_local_dataset():

data = tf.data.Dataset.from_tensor_slices((tf.random.normal([10, 2]), tf.random.uniform([10], minval=0, maxval=2, dtype=tf.int32)))

return data.batch(2)

# 构建简单模型

def create_model():

model = tf.keras.Sequential([

tf.keras.layers.Dense(10, activation='relu', input_shape=(2,)),

tf.keras.layers.Dense(2, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy'])

return model

# 模拟多个客户端的本地数据集

client_datasets = [create_local_dataset() for _ in range(3)]

# 联邦学习过程

iterative_process = tff.learning.build_federated_averaging_process(

model_fn=create_model,

client_optimizer_fn=lambda: tf.keras.optimizers.Adam(0.01)

)

state = iterative_process.initialize()

for _ in range(5):

state, metrics = iterative_process.next(state, client_datasets)

print(f"Round {_ + 1}, Metrics: {metrics}")

3.3同态加密(Homomorphic Encryption,HE)

同态加密允许在密文上进行特定的计算,其结果与在明文上计算后再加密的结果相同。例如,对密文进行加法和乘法运算,解密后的结果等同于对明文进行相应运算的结果。

技术原理:基于数学难题,如大整数分解、离散对数等,构造加密算法,使得密文满足特定的同态性质。

Python 代码示例(使用 SEAL 库实现简单同态加密加法)

首先安装 seal 库(安装过程可能因系统不同而有差异,可参考官方文档):

pip install seal

代码示例:

from seal import *

def homomorphic_encryption_example():

# 初始化加密参数

parms = EncryptionParameters(scheme_type.CKKS)

poly_modulus_degree = 8192

parms.set_poly_modulus_degree(poly_modulus_degree)

parms.set_coeff_modulus(CoeffModulus.Create(poly_modulus_degree, [60, 40, 40, 60]))

scale = 2.0 ** 40

# 创建上下文、密钥生成器等

context = SEALContext.Create(parms)

keygen = KeyGenerator(context)

public_key = PublicKey()

keygen.create_public_key(public_key)

secret_key = keygen.secret_key()

encryptor = Encryptor(context, public_key)

decryptor = Decryptor(context, secret_key)

evaluator = Evaluator(context)

# 明文数据

plaintext1 = Plaintext()

plaintext2 = Plaintext()

encoder = CKKSEncoder(context)

value1 = [1.0, 2.0]

value2 = [3.0, 4.0]

encoder.encode(value1, scale, plaintext1)

encoder.encode(value2, scale, plaintext2)

# 加密

ciphertext1 = Ciphertext()

ciphertext2 = Ciphertext()

encryptor.encrypt(plaintext1, ciphertext1)

encryptor.encrypt(plaintext2, ciphertext2)

# 密文计算(加法)

result_ciphertext = Ciphertext()

evaluator.add(ciphertext1, ciphertext2, result_ciphertext)

# 解密

result_plaintext = Plaintext()

decryptor.decrypt(result_ciphertext, result_plaintext)

result = encoder.decode(result_plaintext)

print(f"明文1: {value1}, 明文2: {value2}, 密文相加结果(解密后): {result}")

if __name__ == "__main__":

homomorphic_encryption_example()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值