[BZOJ]1901: Zju2112 Dynamic Rankings 主席树

Description

给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题。你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令。对于每一个询问指令,你必须输出正确的回答。 第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。分别表示序列的长度和指令的个数。第二行有n个数,表示a[1],a[2]……a[n],这些数都小于10^9。接下来的m行描述每条指令,每行的格式是下面两种格式中的一种。 Q i j k 或者 C i t Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。

Input

对于每一次询问,你都需要输出他的答案,每一个输出占单独的一行。

Output

Sample Input

5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

Sample Output

3
6

HINT

20%的数据中,m,n≤100; 40%的数据中,m,n≤1000; 100%的数据中,m,n≤10000。




主席树的经典运用,其实很多人包括我都有疑惑,为什么这玩意儿叫主席树,这与不待修改差距真是太大了,一个是节省空间的重复运用,一个是树状数组套离散线段树+时开节点,感觉完全没有相似的地方。。。
对于这道题,我们要做的就是用一个树状数组维护一堆线段树,注意这里的一颗线段树相当于不带修改时的logn颗线段树,这样用了logn的空间表示了n的状态,然后时开节点节省空间就是了,似乎还有内存回收,不过懒得管了。
这题最丧失的一点就是暴力能A!!!

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
int n,m,cnt=0;
#define MAX_N 10050
int a[MAX_N],weizhi[MAX_N],aim[MAX_N];
int L[MAX_N],R[MAX_N],K[MAX_N];
int p[MAX_N*2],num=0;
 
char ch[MAX_N];
int tp1,tp2;
int v1[MAX_N],v2[MAX_N];
 
int findth(int x){
    int lft=1,rgt=num,mid;
    for (;lft<=rgt;){
        mid=(lft+rgt)/2;
        if (p[mid]==x) return mid;
        if (x<p[mid]) rgt=mid-1;
        else lft=mid+1;
        }
}
#define lc(k) f[k].lc
#define rc(k) f[k].rc
#define sum(k) f[k].sum
struct node{
    int lc,rc,sum;
}   f[MAX_N*100];
int root[MAX_N*4];
int tal;
void updata(int k){
    sum(k)=sum(lc(k))+sum(rc(k));
}
void add(int &k,int l,int r,int x,int v){
    if (!k) k=++tal;
    if (l==r){
        sum(k)+=v;
        return;
        }
    int mid=(l+r)/2;
    if (x<=mid) add(lc(k),l,mid,x,v);
    else add(rc(k),mid+1,r,x,v);
    updata(k);
}
int query(int l,int r,int kth){
    if (l==r) return l;
    int ls=0;
    for (int k=1;k<=tp2;k++) ls+=sum(lc(v2[k]));
    for (int k=1;k<=tp1;k++) ls-=sum(lc(v1[k]));
    if (kth<=ls){
        for (int k=1;k<=tp2;k++) v2[k]=lc(v2[k]);
        for (int k=1;k<=tp1;k++) v1[k]=lc(v1[k]);
        return query(l,(l+r)/2,kth);
        }
    else{
        for (int k=1;k<=tp2;k++) v2[k]=rc(v2[k]);
        for (int k=1;k<=tp1;k++) v1[k]=rc(v1[k]);
        return query((l+r)/2+1,r,kth-ls);
        }
}
void modify(int l,int r,int x,int v){
    if (l==r){
        for (int k=1;k<=tp1;k++) sum(v1[k])+=v;
        return;
        }
    int mid=(l+r)/2;
    if (x<=mid){
        for (int k=1;k<=tp1;k++){
            if (!lc(v1[k])) lc(v1[k])=++tal;
            v1[k]=lc(v1[k]);
            }
        modify(l,mid,x,v);
        }
    else{
        for (int k=1;k<=tp1;k++){
            if (!rc(v1[k])) rc(v1[k])=++tal;
            v1[k]=rc(v1[k]);
            }
        modify(mid+1,r,x,v);
        }
     
    for (int k=1;k<=tp1;k++) updata(v1[k]);
}
int main(){
//  freopen("1901.in","r",stdin);
//  freopen("1901.out","w",stdout);
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        p[++cnt]=a[i];
        }
    for (int i=1;i<=m;i++){
        scanf("\n%c",&ch[i]);
        if (ch[i]=='Q'){
            scanf("%d%d%d",&L[i],&R[i],&K[i]);
            }
        else{
            scanf("%d%d",&weizhi[i],&aim[i]);
            p[++cnt]=aim[i];
            }
        }
    sort(p+1,p+cnt+1);
    p[cnt+1]=99999999;
    for (int i=1;i<=cnt;i++)
        if (p[i]!=p[i+1])
            p[++num]=p[i];
    for (int i=1;i<=n;i++) a[i]=findth(a[i]);
    for (int i=1;i<=m;i++)
        if (ch[i]=='C') aim[i]=findth(aim[i]);
     
    for (int i=1;i<=n;i++){
        for (int k=i;k<=n;k+=k&(-k))
            add(root[k],1,num,a[i],1);
        }
     
    for (int i=1;i<=m;i++){
        if (ch[i]=='Q'){
            tp1=tp2=0;
            for (int k=L[i]-1;k;k-=k&(-k)) v1[++tp1]=root[k];
            for (int k=R[i];k;k-=k&(-k)) v2[++tp2]=root[k];
            printf("%d\n",p[query(1,num,K[i])]);
            }
        else{
            for (int k=weizhi[i];k<=n;k+=k&(-k))
                add(root[k],1,num,a[weizhi[i]],-1);
            a[weizhi[i]]=aim[i];
            for (int k=weizhi[i];k<=n;k+=k&(-k))
                add(root[k],1,num,a[weizhi[i]],1);
            }
        }
     
    return 0;
}


发布了31 篇原创文章 · 获赞 75 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览