OpenCV
文章平均质量分 81
eternity1118_
不积跬步无以至千里,不积小流无以成江海
展开
-
图像匹配之感知哈希(pHash)算法的OpenCV实现
1.前言 目前“以图搜图”的引擎越来越多,可参考博文: http://blog.csdn.net/forthcriminson/article/details/8698175 此篇博文中列出了很多“以图搜图”的引擎,之前很好奇他们是如何进行检索的,偶然间看到了一篇博客,上面说Google和Tineye主要利用的算法是感知哈转载 2016-04-07 18:01:27 · 16545 阅读 · 2 评论 -
基于DL的计算机视觉(2)--实现图像分类最简单的方法:KNN
1. 图像分类问题这是人每天自然而然会做的事情,普通到大部分时候,我们都感知不到我们在完成一个个这样的任务。早晨起床洗漱,你要看看洗漱台一堆东西中哪个是杯子,哪个是你的牙刷;转载 2016-08-11 11:21:05 · 2788 阅读 · 0 评论 -
基于DL的计算机视觉(3)-- SVM和Softmax分类器
1. 线性分类器在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了一种简单的解决方法——KNN。然后我们也看到了KNN在解决这个问题的时候,虽然实现起来非转载 2016-08-11 11:23:19 · 1686 阅读 · 0 评论 -
基于DL的计算机视觉(4)-- SGD
1. 引言上一节深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器中提到两个对图像识别至关重要的概念:用于把原始像素信息映射到不同类别得分的得分函数/转载 2016-08-11 11:25:39 · 950 阅读 · 0 评论 -
基于DL的计算机视觉(5)--理解反向传播
1. 引言其实一开始要讲这部分内容,我是拒绝的,原因是我觉得有一种写高数课总结的感觉。而一般直观上理解反向传播算法就是求导的一个链式法则而已。但是偏偏理解这部分和其中的转载 2016-08-11 11:29:21 · 985 阅读 · 0 评论 -
OpenCV+Tesseract进行OCR学习(一)文字提取
使用Tesseract进行OCR学习(一)文字提取使用Tesseract进行OCR学习一文字提取OCR简介文字提取codeOCR简介熟悉OCR的人都了解,OCR大致分为两个部分:-文字提取text extractor -文字识别text recognition其中,第一部分是属于图像处理部分,涉及到图像分割的知识,而第二部分则大多数利用谷歌的Tesseract来进行字符的识别,设计到的东西不多原创 2016-09-18 16:14:22 · 25938 阅读 · 24 评论 -
OpenCV+Tesseract进行OCR学习(二)文字识别
OpenCV的Tesseract使用OpenCV的Tesseract使用Mac端的Tesseract使用iOS端的Tesseract使用Mac端的Tesseract使用Tesseract的安装 Mac上的Tesseract安装很方便,直接利用brew来安装:brew updatebrew install tesseract或者下载源码进行编译安装: Github地址Tesseract的使用原创 2016-09-18 16:57:27 · 14288 阅读 · 0 评论 -
图片序列与视频之间的转换
视频转成图片序列图片序列转成视频调用测试视频的读取图片序列的读取视频转成图片序列//将视频转化问AVI格式 int VideoToImage(char* videoName, char* outDir, char* imgExt, int maxFrameCount) { VideoCapture cap(videoName); if (!ca原创 2017-04-27 14:03:03 · 1859 阅读 · 0 评论 -
手把手教你Dlib+VS2013+Win7配置(详细)
下载文件Dlib下载官网 http://dlib.net/ 只push了最新版本;且最新版本要求vs2015github https://github.com/davisking/dlib 在分支里可以找到各种版本其它 http://dlib.net/files/ 这里有很多版本,还有人脸数据,以及模型文件等cmake下载版本数:需要2.8原创 2018-01-17 16:42:04 · 1726 阅读 · 1 评论 -
利用OpenCV计算图像二维熵
直接上代码:void calc_2D_entropy(cv::Mat &input, cv::Mat &output){ int height = input.rows; int width = input.cols; cv::Mat out = cv::Mat::zeros(height, width, CV_32FC1); //tem...原创 2018-03-23 15:17:38 · 4029 阅读 · 5 评论 -
自适应直方图均衡(AHE)和限制对比度的自适应直方图均衡(CLAHE)
本文翻译自https://en.wikipedia.org/wiki/Adaptive_histogram_equalization,如有错误还望海涵。。自适应的直方图均衡(Adaptive Histogram Equalization)1.算法简介 AHE是一种用来改善图像对比度的图像处理技术,它与传统的(普通)直方图均衡相比,不同点主要在于,AHE通过计算图像每一个显翻译 2016-05-24 17:37:02 · 22668 阅读 · 4 评论 -
限制对比度的自适应直方图均衡化(CLAHE)在opencv中的使用
1.CLAHE简介 HE直方图增强,大家都不陌生,是一种比较古老的对比度增强算法,它有两种变体:AHE和CLAHE;两者都是自适应的增强算法,功能差不多,但是前者有一个很大的缺陷,就是有时候会过度方法图像中相同区域的噪声问,为了解决这一问题,出现了HE的另一种改进算法,就是CLAHE;CLAHE是另外一种直方图均衡算法,能有效的增强或改善图像(局部)对比度,从而获取更多图像相关细节原创 2016-05-24 13:50:01 · 14884 阅读 · 0 评论 -
C++ 提取图像ROI保存到Mat
只要给定待提取ROI的四个角点坐标,利用OpenCV的透视变换计算出变换矩阵,就可以实现提取并保存到Mat;void ls::getROI(cv::Mat &src, float vertices[8],cv::Mat &dst) { float w2 = sqrt(pow(vertices[0] - vertices[2], 2) + pow(vertices[1]原创 2016-06-29 11:10:26 · 2269 阅读 · 0 评论 -
霍夫Hough峰值检测的C++实现
直接上代码,代码里分析峰值检测的基本思想:void ls::houghPeaks(cv::Mat &H,int numpeaks,double thresh,const int *nhood_size,vector &r,vector &c) { bool done = false;//峰值检测布尔值 cv::Mat hnew = H.clone();/原创 2016-05-24 12:20:43 · 5033 阅读 · 1 评论 -
P-N学习
本文翻译自Zdenek Kalal的论文Tracking-Learning-Detection ,PAMI 2010,其中还夹杂我自己的理解,如有错误,还望包涵。 另外,有关P-N学习的更详细知识,可参考Zdenek Kalal的论文PN-learning:Bootstrapping Binary Classifiers by Structural Constraints, Zde翻译 2016-05-25 18:28:52 · 3966 阅读 · 0 评论 -
图像处理与计算机视觉开源库汇总
转载自:http://blog.chinaunix.net/uid-24517893-id-3125166.html通用库/General LibraryOpenCV无需多言。RAVLRecognition And Vision Library. 线程安全。强大的IO机制。包含AAM。CImg很酷的一个图像处理转载 2016-05-27 09:21:33 · 1961 阅读 · 0 评论 -
混合高斯模型GMM
1.简介 GMM(Gaussian Mixture-based Model)作为一种常见的而聚类算法,可以被用来分离场景中前景和背景的,或者叫做背景扣除,那么什么叫做背景扣除(Background Subtraction)呢?我们知道所谓的监控系统中,通常都是利用静态相机来捕捉场景的,因此其中比较具有挑战的一步就是如何检测出场景中的突然闯入者,传统的应用中都会假设场景中没有这样的原创 2016-05-04 16:15:30 · 9443 阅读 · 0 评论 -
Mac下安装Opencv并配置Xcode
step1:下载OpenCVstep2:打开终端,进到opencv源码主目录下;step3:键入以下命令 1.sudo cmake -G "Unix Makefiles" 2.sudo make (可加上-j8或-j4选项,加快编译速度) 3.sudo make install (可加上-j8或-j4选项,加快编译速度)原创 2016-04-20 18:07:22 · 1854 阅读 · 0 评论 -
运动跟踪算法CMT(续)之层次凝聚聚类算法(HAC)
熟悉CMT的都知道,作者在聚类部分使用了层次凝聚聚类算法(Hierarchical Agglomerative Clustering)并且使用的是单链(Single-link),今天我们就来学习下这个算法。 前面学习了几种聚类算法,K-Means,EM,AP等都属于平面聚类(Flat Clustering),因为这些算法的输出都是返回一个平面的无结构的聚类集合,所以叫做Flat c原创 2016-05-28 23:23:25 · 4775 阅读 · 0 评论 -
运动跟踪之均值漂移(MeanShift)算法和Camshift算法(连续自适应的MeanShift)
直方图引入直方图是一个简单的表,它给出了一幅图像或一组图像中拥有给定数值的像素数量。因此,灰度图像的直方图有256个条目(或称为容器)。0号容器给出值为0的像素数目,1号容器给出值为1的像素个数,以此类推。直方图反投影直方图是图像内容的一个重要特性。如果一幅图像的区域中显示的是一种独特的纹理或是一个独特的物体,那么这个区域的直方图可以看做一个概率函数,它给出的是某个像素属于该纹理或物体转载 2016-05-16 17:28:51 · 5392 阅读 · 0 评论 -
运动跟踪之CMT算法
CMT(Clustering of Static-Adaptive Correspondences for Deformable Object Tracking),是一套比较新的跟踪算法,诞生于2014年,原名叫Consensus-based Tracking and Matching of Keypoints for Object Tracking ,当时在计算机视觉应用(Applicati原创 2016-05-14 21:29:17 · 16254 阅读 · 34 评论 -
OpenCV之特征检测器(Feature Detector),描述子提取器(Descriptor Extractor)和描述子匹配器(Descriptor Matcher)
1.特征检测子 -Harriscv::cornerHarris(image,strength,3,3,0.01); -Fastcv::Ptr fast = cv::FastFeatureDetector::create();//或cv::FAST(InputArray image, std::vector &keypoints, int threshold)原创 2016-05-09 15:28:20 · 11878 阅读 · 0 评论 -
常见传统目标检测算法
一 概览首先,我们先来看下目标检测的发展历程:1.2001年,V-J检测器诞生,主要用于人脸的检测;2.2006年,HOG + SVM的方法出现,主要用于行人的检测;3.2008年,rgb大神(记住这个人,后面的R-CNN系列检测算法也是出自他之手)研究出了著名的DPM算法,在深度学习方法成熟之前的很长一段时间里,就是这个算法一直在目标检测中发挥作用;以上算法是属于传统目标检测的算法...原创 2019-03-29 18:15:57 · 20390 阅读 · 2 评论