题目描述
九连环是一种源于中国的传统智力游戏。如图所示,九个圆环套在一把“剑”上,并且互相牵连。游戏的目标是把九个圆环从“剑”上卸下。
圆环的装卸需要遵守两个规则。
第一个(最右边)环任何时候都可以装上或卸下。
如果第k个环没有被卸下,且第k个环右边的所有环都被卸下,则第k+1个环(第k个环左边相邻的环)可以任意装上或卸下。
与魔方的千变万化不同,解九连环的最优策略是唯一的。为简单起见,我们以“四连环”为例,演示这一过程。这里用1表示环在“剑”上,0表示环已经卸下。
初始状态为1111,每部的操作如下:
1101(根据规则2,卸下第2个环)
1100(根据规则1,卸下第1个环)
0100(根据规则2,卸下第4个环)
0101(根据规则1,装上第1个环)
0111(根据规则2,装上第2个环)
0110(根据规则1,卸下第1个环)
0010(根据规则2,卸下第3个环)
0011(根据规则1,装上第1个环)
0001(根据规则2,卸下第2个环)
0000(根据规则1,卸下第1个环)
由此可见,卸下“四连环”至少需要10步。随着环数增加,需要的步数也会随之增多。例如卸下九连环,就至少需要341步。
请你计算,有n个环的情况下,按照规则,全部卸下至少需要多少步。
输入
输入第一行为一个整数m ,表示测试点数目。
接下来m行,每行一个整数n。
输出
输出共m行,对应每个测试点的计算结果。
样例输入
3
3
5
9
样例输出
5
21
341
提示
对于10%的数据,1≤n≤10。
对于30%的数据,1≤n≤30。
对于100%的数据,1≤n≤105,1≤m≤10。
来源/分类
重庆OI2018
题解:题目本身不难,奈何不知道大数
***大数问题,其实就是模拟运算,因为系统自带的int long bouble这些类型无法容纳百位千位的大数字,从而手动模拟运算过程,使用字符串来表示这样的超大数字,如果你会Java的话就简单多了,直接有一个大数类,可以像用函数一样直接调用***
自己写的代码略low,贴一个大佬的代码作参考:
自己的:
#include<bits/stdc++.h>
#define LL long long
#define inf 0x3f3f3f3
using namespace std;
typedef long long ll;
const int N = 1e7+7;
const long long mod=1e9;
typedef long long ll;
const int base = 100000000; //进制
const int base_digits = 8; //进制位数
struct bigint {
vector<int> z;
int sign; //1 for +,-1 for -
bigint(){sign=1;}
bigint(ll v){*this=v;z.push_back(0);}
bigint(const string &s){read(s);}
void operator=(const bigint &v){
sign = v.sign;
z = v.z;
}
void operator=(ll v){
sign = 1;
if (v < 0)
sign = -1, v = -v;
z.clear();
for (; v > 0; v = v / base)
z.push_back(v % base);
}
void trim() {
while (!z.empty() && z.back() == 0)
z.pop_back();
if (z.empty())
sign = 1;
}
bigint operator-() const {
bigint res = *this;
res.sign = -sign;
return res;
}
bigint abs() const {
bigint res = *this;
res.sign *= res.sign;
return res;
}
void read(const string &s){
sign = 1;
z.clear();
int pos = 0;
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits) {
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
z.push_back(x);
}
trim();
}
bigint operator+(const bigint &v) const {
if (sign == v.sign) {
bigint res = v;
for (int i = 0, carry = 0; i < (int) max(z.size(), v.z.size()) || carry; ++i) {
if (i == (int) res.z.size())
res.z.push_back(0);
res.z[i] += carry + (i < (int) z.size() ? z[i] : 0);
carry = res.z[i] >= base;
if (carry)
res.z[i] -= base;
}
return res;
}
return *this - (-v);
}
bigint operator-(const bigint &v) const {
if (sign == v.sign) {
if (abs() >= v.abs()) {
bigint res = *this;
for (int i = 0, carry = 0; i < (int) v.z.size() || carry; ++i) {
res.z[i] -= carry + (i < (int) v.z.size() ? v.z[i] : 0);
carry = res.z[i] < 0;
if (carry)
res.z[i] += base;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) {
int n = a.size();
vll res(n + n);
if (n <= 32) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int) a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int) r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int) a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
bigint operator*(const bigint &v) const {
vll a(this->z.begin(), this->z.end());
vll b(v.z.begin(), v.z.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int) c.size(); i++) {
long long cur = c[i] + carry;
res.z.push_back((int) (cur % base));
carry = (int) (cur / base);
}
res.trim();
return res;
}
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1){
int norm = base / (b1.z.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size());
for (int i = a.z.size() - 1; i >= 0; i--) {
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
int d = ((long long) s1 * base + s2) / b.z.back();
r -= b * d;
while (r < 0)
r += b, --d;
q.z[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
bigint operator/(const bigint &v) const{
return divmod(*this, v).first;
}
bigint operator%(const bigint &v) const {
return divmod(*this, v).second;
}
void operator+=(const bigint &v) {
*this = *this + v;
}
void operator-=(const bigint &v) {
*this = *this - v;
}
void operator*=(const bigint &v) {
*this = *this * v;
}
void operator/=(const bigint &v) {
*this = *this / v;
}
bool operator<(const bigint &v) const {
if (sign != v.sign)
return sign < v.sign;
if (z.size() != v.z.size())
return z.size() * sign < v.z.size() * v.sign;
for (int i = z.size() - 1; i >= 0; i--)
if (z[i] != v.z[i])
return z[i] * sign < v.z[i] * sign;
return false;
}
bool operator>(const bigint &v) const {
return v < *this;
}
bool operator<=(const bigint &v) const {
return !(v < *this);
}
bool operator>=(const bigint &v) const {
return !(*this < v);
}
bool operator==(const bigint &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const {
return *this < v || v < *this;
}
friend istream& operator>>(istream &stream, bigint &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const bigint &v) {
if (v.sign == -1)
stream << '-';
stream << (v.z.empty() ? 0 : v.z.back());
for (int i = (int) v.z.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.z[i];
return stream;
}
void operator*=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int) z.size() || carry; ++i) {
if (i == (int) z.size())
z.push_back(0);
long long cur = z[i] * (long long) v + carry;
carry = (int) (cur / base);
z[i] = (int) (cur % base);
}
trim();
}
bigint operator*(int v) const {
bigint res = *this;
res *= v;
return res;
}
void operator/=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
long long cur = z[i] + rem * (long long) base;
z[i] = (int) (cur / v);
rem = (int) (cur % v);
}
trim();
}
bigint operator/(int v) const {
bigint res = *this;
res /= v;
return res;
}
int operator%(int v) const {
if (v < 0)
v = -v;
int m = 0;
for (int i = z.size() - 1; i >= 0; --i)
m = (z[i] + m * (long long) base) % v;
return m * sign;
}
friend bigint sqrt(const bigint &a1) {
bigint a = a1;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
int n = a.z.size();
int firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
int q = firstDigit;
bigint res;
for(int j = n / 2 - 1; j >= 0; j--) {
for(; ; --q) {
bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
if (r1 >= 0) {
r = r1;
break;
}
}
res *= base;
res += q;
if (j > 0) {
int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
q = ((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2);
}
}
res.trim();
return res / norm;
}
};
bigint qpow(ll n, ll m)
{ bigint ans=1;
//n%=mod;
while(m)
{
if(m%2)
ans=(ans*n);
m/=2;
n=(n*n);
}
cout<<"aaa"<<ans-1<<endl;
return ans;
}
bigint qpow(int b)
{
bigint ans=1,a=2;
while(b)
{
if(b&1)
ans=(ans*a);
a=(a*a);
b/=2;
}
//cout<<"aaa"<<ans/3<<endl;
return ans;
}
int main()
{
int n,m;
scanf("%d",&m);
while(m--){
scanf("%d",&n);
if(n%2==1)
cout<<((qpow(n+1))/3)<<endl;
else
cout<<((qpow(n+1))/3)<<endl;
}
return 0;
}
大佬的:
#include<bits/stdc++.h>
using namespace std;
//大整数
struct BigInteger
{
static const int BASE=100000000;//和WIDTH保持一致
static const int WIDTH=8;//八位一存储,如修改记得修改输出中的%08d
bool sign;//符号, 0表示负数
size_t length;
vector<int> num;//反序存
//构造函数
BigInteger (long long x = 0) { *this = x; }
BigInteger (const string& x) { *this = x; }
BigInteger (const BigInteger& x) { *this = x; }
//剪掉前导0
void cutLeadingZero()
{
while(num.back() == 0 && num.size() != 1) { num.pop_back(); }
}
//设置数的长度
void setLength()
{
cutLeadingZero();
int tmp = num.back();
if(tmp == 0) { length = 1; }
else
{
length = (num.size() - 1) * WIDTH;
while(tmp > 0) { ++length; tmp /= 10; }
}
}
//赋值运算符
BigInteger& operator = (long long x)
{
num.clear();
if (x >= 0) sign = true;
else { sign = false; x = -x; }
do
{
num.push_back(x%BASE);
x/=BASE;
}while(x>0);
setLength();
return *this;
}
//赋值运算符
BigInteger& operator = (const string& str)
{
num.clear();
sign = (str[0] != '-');//设置符号
int x, len=(str.size()-1-(!sign))/WIDTH+1;
for(int i=0;i<len;i++)
{
int End=str.length()-i*WIDTH;
int start=max((int)(!sign), End-WIDTH);//防止越界
sscanf(str.substr(start,End-start).c_str(),"%d",&x);
num.push_back(x);
}
setLength();
return *this;
}
//赋值运算符
BigInteger& operator = (const BigInteger& tmp)
{
num = tmp.num;
sign = tmp.sign;
length = tmp.length;
return *this;
}
//数的位数
size_t size() const { return length; }
//*10^n 除法中用到
BigInteger e(size_t n) const
{
int tmp = n % WIDTH;
BigInteger ans;
ans.length = n + 1;
n /= WIDTH;
while (ans.num.size() <= n) ans.num.push_back(0);
ans.num[n] = 1;
while (tmp--) ans.num[n] *= 10;
return ans*(*this);
}
//绝对值
BigInteger abs() const
{
BigInteger ans(*this);
ans.sign = true;
return ans;
}
//正号
const BigInteger& operator + () const { return *this; }
// + 运算符
BigInteger operator + (const BigInteger& b) const
{
if (!b.sign) { return *this - (-b); }
if (!sign) { return b - (-*this); }
BigInteger ans;
ans.num.clear();
for(int i=0,g=0;;i++)
{
if(g==0&&i>=num.size()&&i>=b.num.size()) break;
int x=g;
if(i<num.size()) x+=num[i];
if(i<b.num.size()) x+=b.num[i];
ans.num.push_back(x%BASE);
g=x/BASE;
}
ans.setLength();
return ans;
}
//负号
BigInteger operator - () const
{
BigInteger ans(*this);
if (ans != 0) ans.sign = !ans.sign;
return ans;
}
// - 运算符
BigInteger operator - (const BigInteger& b) const
{
if (!b.sign) { return *this + (-b); }
if (!sign) { return -((-*this) + b); }
if (*this < b) { return -(b - *this); }
BigInteger ans;
ans.num.clear();
for(int i=0,g=0;;i++)
{
if(g==0&&i>=num.size()&&i>=b.num.size()) break;
int x=g; g=0;
if(i<num.size()) x+=num[i];
if(i<b.num.size()) x-=b.num[i];
if(x<0)
{
x+=BASE;g=-1;
}
ans.num.push_back(x);
}
ans.setLength();
return ans;
}
// * 运算符
BigInteger operator * (const BigInteger& b) const
{
int lena = num.size(), lenb = b.num.size();
vector<long long> ansLL;
for (int i = 0; i < lena+lenb; i++) ansLL.push_back(0);
for (int i = 0; i < lena; i++)
{
for (int j = 0; j < lenb; j++)
{
ansLL[i+j] += (long long)num[i]*(long long)b.num[j];
}
}
while (ansLL.back() == 0 && ansLL.size() != 1) ansLL.pop_back();
int len = ansLL.size();
long long g = 0, tmp;
BigInteger ans;
ans.sign = (ansLL.size() == 1 && ansLL[0] == 0) || (sign == b.sign);
ans.num.clear();
for (int i = 0; i < len; i++)
{
tmp = ansLL[i];
ans.num.push_back((tmp + g)%BASE);
g = (tmp + g) / BASE;
}
if (g > 0) ans.num.push_back(g);
ans.setLength();
return ans;
}
// / 运算符 (大数除小数)
BigInteger operator / (const long long& b) const
{
BigInteger c;
c.num.clear();
for(int i=0;i<num.size();i++)
{
c.num.push_back(0);
}
long long g=0;
for(int i=num.size()-1;i>=0;i--)
{
c.num[i]=(num[i]+g*BASE)/b;
g=num[i]+g*BASE-c.num[i]*b;
}
for(int i=num.size()-1;c.num[i]==0;i--)
{
c.num.pop_back();
}
return c;
}
// /运算符 (大数除大数)
BigInteger operator / (const BigInteger& b) const
{
BigInteger aa((*this).abs());
BigInteger bb(b.abs());
if (aa < bb) return 0;
char *str = new char[aa.size() + 1];
memset(str, 0, sizeof(char)*(aa.size()+1));
BigInteger tmp;
int lena = aa.length, lenb = bb.length;
for (int i = 0; i <= lena - lenb; i++)
{
tmp = bb.e(lena - lenb - i);
while (aa >= tmp)
{
++str[i];
aa = aa - tmp;
}
str[i] += '0';
}
BigInteger ans(str);
delete[]str;
ans.sign = (ans == 0 || sign == b.sign);
return ans;
}
// % 运算符 (大数取模小数)
BigInteger operator % (const long long& b) const
{
long long ans=0,lena=num.size();
for(int i=lena-1;i>=0;i--)
{
ans=(ans*BASE+num[i])%b;
}
return ans;
}
// %运算符 (大数取模大数)
BigInteger operator % (const BigInteger& b) const
{
return *this - *this / b * b;
}
BigInteger& operator ++ () { *this=*this+1;return *this; } // ++ 运算符
BigInteger& operator -- () { *this=*this-1;return *this; } // -- 运算符
BigInteger& operator += (const BigInteger& b) { *this=*this+b;return *this; } // += 运算符
BigInteger& operator -= (const BigInteger& b) { *this=*this-b;return *this; } // -= 运算符
BigInteger& operator *= (const BigInteger& b) { *this=*this*b;return *this; } // *=运算符
BigInteger& operator /= (const long long& b) { *this=*this/b;return *this; } // /=运算符
BigInteger& operator /= (const BigInteger& b) { *this=*this/b;return *this; } // /= 运算符
BigInteger& operator %= (const long long& b) { *this=*this%b;return *this; } // %=运算符
BigInteger& operator %= (const BigInteger& b) { *this=*this%b;return *this; } // %=运算符
// < 运算符
bool operator < (const BigInteger& b) const
{
if (sign && !b.sign) { return false; }//正负
else if(!sign && b.sign) { return true; }//负正
else if(!sign && !b.sign) { return -b < -*this; }//负负
//正正
if(num.size()!=b.num.size()) return num.size()<b.num.size();
for(int i=num.size()-1;i>=0;i--)
if(num[i]!=b.num[i]) return num[i]<b.num[i];
return false;
}
bool operator > (const BigInteger& b) const { return b<*this; } // > 运算符
bool operator <= (const BigInteger& b) const { return !(b<*this); } // <= 运算符
bool operator >= (const BigInteger& b) const { return !(*this<b); } // >= 运算符
bool operator != (const BigInteger& b) const { return b<*this||*this<b; } // != 运算符
bool operator == (const BigInteger& b) const { return !(b<*this)&&!(*this<b); }//==运算符
bool operator || (const BigInteger& b) const { return *this != 0 || b != 0; } // || 运算符
bool operator && (const BigInteger& b) const { return *this != 0 && b != 0; } // && 运算符
bool operator ! () { return (bool)(*this == 0); } // ! 运算符
//重载<<使得可以直接输出大数
friend ostream& operator << (ostream &out,const BigInteger &x)
{
if (!x.sign) out<<'-';
out<<x.num.back();
for(int i=x.num.size()-2;i>=0;i--)
{
char buf[10];
//如WIDTH和BASR有变化,此处要修改为%0(WIDTH)d
sprintf(buf,"%08d",x.num[i]);
for(int j=0;j<strlen(buf);j++) out<<buf[j];
}
return out;
}
//重载>>使得可以直接输入大数
friend istream& operator >> (istream &in, BigInteger &x)
{
string str;
in >> str;
size_t len = str.size();
int i, start = 0;
if (str[0] == '-') start = 1;
if (str[start] == '\0') return in;
for (int i = start; i < len; i++)
{
if (str[i] < '0' || str[i] > '9') return in;
}
x.sign = !start;
x = str.c_str();
return in;
}
};
BigInteger qpow(int b)
{
BigInteger ans=1,a=2;
while(b)
{
if(b&1)
ans=(ans*a);
a=(a*a);
b/=2;
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
BigInteger a=1;
a=qpow(n+1);
if(n%2)
a=(a-1)/3;
else
a=(a-2)/3;
cout<<a<<endl;
}
return 0;
}
还有一个java版本的:
import java.math.BigInteger;
import java.util.*;
import javax.security.auth.callback.LanguageCallback;
public class Main{
public static void main(String[] args)
{
Scanner cin = new Scanner(System.in);
BigInteger[] a = new BigInteger[5];
a[0]=BigInteger.ONE;
a[1]=a[0].add(a[0]);
int m,n;
m = cin.nextInt();
for(int i=0;i<m;i++)
{
n = cin.nextInt();
BigInteger x = a[1];
for(int j=2;j<=n;j++)
{
if(j%2!=0)
x=x.multiply(a[1]);
else
x=(x.multiply(a[1])).subtract(a[0]);
}
System.out.println(x.subtract(a[0]));
}
}
}