6760: 九连环(大数)

7 篇文章 0 订阅

6760: 九连环

http://exam.upc.edu.cn/problem.php?id=6760

时间限制: 1 Sec  内存限制: 128 MB
提交: 582  解决: 92
[提交] [状态] [讨论版] [命题人:admin]

题目描述

九连环是一种源于中国的传统智力游戏。如图所示,九个圆环套在一把“剑”上,并且互相牵连。游戏的目标是把九个圆环从“剑”上卸下。

圆环的装卸需要遵守两个规则。
第一个(最右边)环任何时候都可以装上或卸下。
如果第k个环没有被卸下,且第k个环右边的所有环都被卸下,则第k+1个环(第k个环左边相邻的环)可以任意装上或卸下。
与魔方的千变万化不同,解九连环的最优策略是唯一的。为简单起见,我们以“四连环”为例,演示这一过程。这里用1表示环在“剑”上,0表示环已经卸下。
初始状态为1111,每部的操作如下:
1101(根据规则2,卸下第2个环)
1100(根据规则1,卸下第1个环)
0100(根据规则2,卸下第4个环)
0101(根据规则1,装上第1个环)
0111(根据规则2,装上第2个环)
0110(根据规则1,卸下第1个环)
0010(根据规则2,卸下第3个环)
0011(根据规则1,装上第1个环)
0001(根据规则2,卸下第2个环)
0000(根据规则1,卸下第1个环)
由此可见,卸下“四连环”至少需要10步。随着环数增加,需要的步数也会随之增多。例如卸下九连环,就至少需要341步。
请你计算,有n个环的情况下,按照规则,全部卸下至少需要多少步。

 

输入

输入第一行为一个整数m ,表示测试点数目。
接下来m行,每行一个整数n。

 

输出

输出共m行,对应每个测试点的计算结果。

 

样例输入

3
3
5
9

 

样例输出

5
21
341

 

提示

对于10%的数据,1≤n≤10。
对于30%的数据,1≤n≤30。
对于100%的数据,1≤n≤105,1≤m≤10。

规律:

       奇数 :  a[i-1]*2+1;

       偶数:a[i-1]*2;

代码:

import java.util.*;
import java.math.*;

public class dashu{
	public static void main(String[] args) {
		int m,n;
		Scanner cin=new Scanner(System.in);
		m=cin.nextInt();
	    while(m>0) {
	    	m--;
	    	n=cin.nextInt();
	    	if(n==1)
	    		System.out.println("1");
	    	else
	    	{
	    		BigInteger s;
	    		BigInteger a=BigInteger.valueOf(1);
	    		BigInteger b=BigInteger.valueOf(2);
	    		s=a;
	    		for(int i=2;i<=n;i++)
	    	    {

	    	        if(i%2==0)
	    	            s=s.multiply(b);
	    	        else{
	    	        	s=s.multiply(b);
	    	        	s=s.add(a);
	    	        }
	    	    }
	    		System.out.println(s);
	    	}
	    }
	    
	    
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值