欢迎来到ChatGPT 开发人员提示工程课程(ChatGPT Prompt Engineering for Developers)!本课程将教您如何通过OpenAI API有效地利用大型语言模型(LLM)来创建强大的应用程序。
本课程由OpenAI 的Isa Fulford和 DeepLearning.AI 的Andrew Ng主讲,深入了解 LLM 的运作方式,提供即时工程的最佳实践,并演示 LLM API 在各种应用程序中的使用。
聊天格式
在本课程中,您将探索如何利用聊天格式与个性化或针对特定任务或行为专门设计的聊天机器人进行扩展对话。
设置
import os
import openai
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # 读取本地 .env 文件
openai.api_key = os.getenv('OPENAI_API_KEY')
def get_completion(prompt, model="gpt-3.5-turbo"):
messages = [{
"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0, # 这是模型输出的随机程度
)
return response.choices[0].message["content"]
def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature, # 这是模型输出的随机程度
)
# print(str(response.choices[0].message))
return response.choices[0].message