【OpenAI官方课程】第七课:ChatGPT聊天格式Chatbot

本文介绍了如何通过OpenAIAPI和LLM(大型语言模型)开发ChatGPT应用程序,包括课程内容、设置示例和如何创建一个OrderBot,展示如何在聊天场景中扩展对话功能并生成JSON订单摘要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎来到ChatGPT 开发人员提示工程课程(ChatGPT Prompt Engineering for Developers)!本课程将教您如何通过OpenAI API有效地利用大型语言模型(LLM)来创建强大的应用程序。

本课程由OpenAI 的Isa Fulford和 DeepLearning.AI 的Andrew Ng主讲,深入了解 LLM 的运作方式,提供即时工程的最佳实践,并演示 LLM API 在各种应用程序中的使用。

聊天格式

在本课程中,您将探索如何利用聊天格式与个性化或针对特定任务或行为专门设计的聊天机器人进行扩展对话。

设置

import os
import openai
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # 读取本地 .env 文件

openai.api_key  = os.getenv('OPENAI_API_KEY')
def get_completion(prompt, model="gpt-3.5-turbo"):
    messages = [{
   "role": "user", "content": prompt}]
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=0, # 这是模型输出的随机程度
    )
    return response.choices[0].message["content"]

def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=temperature, # 这是模型输出的随机程度
    )
#     print(str(response.choices[0].message))
    return response.choices[0].message
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值