欢迎来到ChatGPT 开发人员提示工程课程(ChatGPT Prompt Engineering for Developers)!本课程将教您如何通过OpenAI API有效地利用大型语言模型(LLM)来创建强大的应用程序。
本课程由OpenAI 的Isa Fulford和 DeepLearning.AI 的Andrew Ng主讲,深入了解 LLM 的运作方式,提供即时工程的最佳实践,并演示 LLM API 在各种应用程序中的使用。
在本课程笔记本中,我们将探讨如何使用大型语言模型进行文本转换任务,例如语言翻译、拼写和语法检查、语气调整以及格式转换。
设置
import openai
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # 读取本地的.env文件
openai.api_key = os.getenv('OPENAI_API_KEY')
def get_completion(prompt, model="gpt-3.5-turbo", temperature=0):
messages = [{
"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
)
return response.choices[0].message["content"]
翻译
ChatGPT是通过许多语言的来源进行训练的。这使得该模型具有翻译能力。以下是如何使用这种能力的一些示例。
prompt = f"""
将以下英文文本翻译成西班牙文:\
```Hi, I would like to order a blender```
"""
response = get_completion(prompt)
print(response)
Hola, me gustaría ordenar una licuadora.
prompt = f"""
告诉我这是哪种语言:
```Combien coûte le lampadaire?```
"""
response = get_completion(prompt)