原文链接:感谢作者
1、打印汉诺塔移动步骤,并且计算复杂度。
方法是递归,将n-1层移到中间柱,然后将最底层移到目标柱,然后再把n-1层移到目标柱。
f(n) = 2f(n-1) + 1 , f(1) = 1
f(n) + 1 = 2( f(n-1) + 1 )
f(n) = 2^n - 1
T(n) = O(2^n);
2、计算两个字符串的是否相似(字符的种类,和出现次数相同)
先比较strlen,如果不相等,直接返回false
根据ASCII码建表 str[255],然后比较字符的出现次数,如有一个不同,返回false。
然后比较位置吧。有一个不同,就返回true。
3、定义二叉树,节点值为int,计算二叉树中的值在[a,b]区间的节点的个数。
任意一种方式遍历二叉树,如果值在 [a,b] 之间,计数器+1
4、一条路有k可坑,每次能跳平方数步长(1 4 9 16。。),不能跳到坑里,从a跳到b最少几步?(动态规划题)
动态转移方程
f(n) = min( f(大于n的第一个平方数 -n) ,f(n- 小于n的第一个完全平方数) +1 )
【 补充 ing
在一个坐标轴上, 给定两个点,一个起点,一个终点,起点有一个方块,方块可以左右移动,但是移动的长度只能是平方数长(1,4,9,16 ••••) ,同时坐标轴上还有洞,移动的过程中不能越过这个洞,不然会掉下去,问 由起点到终点 至少需要多少次移动,不能到达返回-1】
5、给一个整数数组,求数组中重复出现次数大于数组总个数一半的数。
- int MoreThanHalfNum(int *a , int n )
- {
- int i , k , num = a[0];
- int times = 1;
- for(i = 1 ; i < n ; ++i)
- {
- if(times == 0)
- {
- num = a[i];
- times = 1;
- }
- else if(a[i] != num)
- --times;
- else
- ++times;
- }
- k = 0;
- for(i = 0 ; i < n ; ++i)
- {
- if(a[i] == num)
- ++k;
- }
- if(k*2 <= n)
- return -1; //没有找到
- else
- return num; //找到
- }
如果只是一个128bit的流,那就用int对其某个字节,然后移位比较,然后int向后移动3个字节,继续移位比较。如果是很多128bit的流,可以模仿kmp,用上面的方法,每次取int的8bit和目标8bit进行AND操作,结果只有256种可能,事先存一个256的表,查表决定向后跳跃的bit数。
7、交换整型的奇数位和偶数位
问题定义:
Write a program to swap odd and even bits in an integer with as few instructions as possible(e.g, bit 0 and bit 1 are swapped, bit 2 and bit 3 are swapped, etc)
- int SwapOddEvenBit(int x)
- {
- return ( ((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
- }
- int main(void)
- {
- int a = 171;
- printf("%d\n", SwapOddEvenBit(a));
- return 0;
- }
扫描一次数组找出最大值;再扫描一次数组找出最小值。
比较次数2N-2
解法二:
将数组中相邻的两个数分在一组, 每次比较两个相邻的数,将较大值交换至这两个数的左边,较小值放于右边。
对大者组扫描一次找出最大值,对小者组扫描一次找出最小值。
比较1.5N-2次,但需要改变数组结构
解法三:
每次比较相邻两个数,较大者与MAX比较,较小者与MIN比较,找出最大值和最小值。
方法如下:先将一对元素互相进行比较,然后把最小值跟当前最小值进行比较,把最大值跟当前最大值进行比较。因此每两个元素需要3次比较。如果n为奇数,那么比较的次数是3*(n/2)次比较。如果n为偶数,那么比较的次数是3n/2-2次比较。因此,不管是n是奇数还是偶数,比较的次数至多是3*(n/2),具体的代码如下:
- void GetMaxAndMin(int *arr , int n , int &max , int &min)
- {
- int i = 0 ;
- if(n & 1) // 奇数
- {
- max = min = arr[i++];
- }
- else
- {
- if(arr[0] > arr[1])
- {
- max = arr[0];
- min = arr[1];
- }
- else
- {
- max = arr[1];
- min = arr[0];
- }
- i += 2;
- }
- for( ; i < n ; i += 2)
- {
- if(arr[i] > arr[i+1])
- {
- if(arr[i] > max)
- max = arr[i];
- if(arr[i+1] < min)
- min = arr[i+1];
- }
- else
- {
- if(arr[i+1] > max)
- max = arr[i+1];
- if(arr[i] < min)
- min = arr[i];
- }
- }
- }