【ZJOI 2006】 物流运输

【题目链接】

            点击打开链接

【算法】

             令cost(i,j) = 第i天到第j天走相同的路线,路线长度的最小值

             那么,只需筛选出第i天到第j天可以装卸货物的码头,然后将这些码头之间连边,跑弗洛伊德(或其它最短路算法),即可

             然后,我们用f[i]表示前i天,总成本最小是多少,显然有 :

             f[i] = max{f[j-1] + cost(j,i) * (i - j + 1) + k}

             特别地,f[0] = -k

             那么,最后的答案就是f[n]

【代码】

          

#include<bits/stdc++.h>
using namespace std;
#define MAXN 110
#define MAXM 30
const long long INF = 2e9;

long long n,m,k,e,i,j,u,v,w,d,a,b,pos;
long long g[MAXM][MAXM],mark[MAXM][MAXN],f[MAXN];

inline long long calc(long long l,long long r)
{
		long long i,j,k;
		static bool flag[MAXM];
		static long long dist[MAXM][MAXM];
		memset(flag,false,sizeof(flag));
		for (i = 1; i <= m; i++)
		{
				for (j = l; j <= r; j++)
				{
						flag[i] |= mark[i][j];
				}
		}
		for (i = 1; i <= m; i++)
		{
				for (j = 1; j <= m; j++)
				{
						if (i == j) dist[i][j] = 0;
						else if ((!flag[i]) && (!flag[j])) dist[i][j] = g[i][j];
						else dist[i][j] = INF;
				}
		}
		for (k = 1; k <= m; k++)
		{
				for (i = 1; i <= m; i++)
				{
						if (i == k) continue;
						for (j = 1; j <= m; j++)
						{
								if (i == j || k == j) continue;
								dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);
						}
				}
		}
		return dist[1][m];
}

int main() {
		
		scanf("%lld%lld%lld%lld",&n,&m,&k,&e);
		for (i = 1; i <= m; i++)
		{
				for (j = 1; j <= m; j++)
				{
						if (i != j) g[i][j] = INF;
				}
		}
		for (i = 1; i <= e; i++) 
		{
				scanf("%lld%lld%lld",&u,&v,&w);
				g[u][v] = g[v][u] = min(g[u][v],w);
		}
		scanf("%lld",&d);
		for (i = 1; i <= d; i++)
		{
				scanf("%lld%lld%lld",&pos,&a,&b);
				mark[pos][a]++; mark[pos][b+1]--;		
		}
		for (i = 1; i <= m; i++)
		{
				for (j = 1; j <= n; j++)
				{
						mark[i][j] += mark[i][j-1];
				}
		}
		
		f[0] = -k;
		for (i = 1; i <= n; i++) f[i] = INF;
		for (i = 1; i <= n; i++)
		{
				for (j = i; j >= 1; j--)
				{
						f[i] = min(f[i],f[j-1] + calc(j,i) * (i - j + 1) + k);				
				}
		}
		
		printf("%lld\n",f[n]);
		
		return 0;
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值