【题目链接】
【算法】
这题描述有些繁琐,先简化一下题意 : 对于一棵无根树,删除一个节点,使得其余的联通块中,最大的联通块最小
那么,这题就很好做了
对这棵树进行一遍DFS,求出每个节点为根的子树的大小(记为size),再求出删除节点后,子树中最大的联通块的大小(记为mx)
那么,删除一个点后(设这个点为x),最大的联通块就是max{n - size[x],mx[x]},求最小的即可
【代码】
此题用std :: vector存储邻接表会离奇Runtime Error,令笔者不解
#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std;
#define MAXN 100010
const int INF = 2e9;
int i,n,u,v,ans = INF,tmp,tot;
vector< int > res;
int Head[MAXN],Next[MAXN],U[MAXN],V[MAXN],fa[MAXN],size[MAXN],mx[MAXN];
inline void addedge(int u,int v)
{
tot++;
U[tot] = u; V[tot] = v;
Next[tot] = Head[u];
Head[u] = tot;
}
inline void dfs(int x)
{
int i,y;
size[x] = 1;
for (i = Head[x]; i; i = Next[i])
{
y = V[i];
if (fa[x] != y)
{
fa[y] = x;
dfs(y);
size[x] += size[y];
mx[x] = max(mx[x],size[y]);
}
}
}
int main()
{
scanf("%d",&n);
for (i = 1; i < n; i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
dfs(1);
for (i = 1; i <= n; i++)
{
tmp = max(mx[i],n-size[i]);
if (tmp < ans)
{
ans = tmp;
res.clear();
res.push_back(i);
} else if (tmp == ans) res.push_back(i);
}
for (i = 0; i < res.size() - 1; i++) printf("%d ",res[i]);
printf("%d\n",res[res.size()-1]);
return 0;
}