【PA 2014】Kuglarz

【题目链接】

            点击打开链接
【算法】

           sum[i]表示前i个杯子中,杯子底下藏有球的杯子总数
           那么,知道[i,j]这段区间中,藏有球的杯子总数的奇偶性,相当于知道sum[j] - sum[i-1]的奇偶性
           我们发现,知道哪些杯子底下藏有球,就是需要我们知道所有sum[i]的奇偶性
           因此,我们只需将所有的(i-1,j)连边,边权为输入数据中给出的费用c(i,j),然后,求出这个图的最小
           生成树,即可

【代码】
           笔者这题求最小生成树使用的是kruskal算法,不过,事实上prim算法可以达到更优的复杂度,kruskal的

           时间复杂度是O(n^2log(n)),而prim的时间复杂度是O(n^2)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 2010

struct info
{
	int u,v;
	long long w;
} e[MAXN*MAXN];

int n,i,j,tot;
long long ans,c;

bool cmp(info a,info b) 
{
	return a.w < b.w;
}
class DisjointSet
{
	private :
		int fa[MAXN];
	public :
		inline void init(int n)
		{
			int i;
			for (i = 1; i <= n; i++) fa[i] = i;
		} 
		inline int get_root(int x)
		{
			if (fa[x] == x) return x;
			return fa[x] = get_root(fa[x]);
		}
		inline void merge(int u,int v)
		{
			fa[get_root(u)] = get_root(v);			
		}
} s;
inline void kruskal()
{
	int i,sx,sy;
	for (i = 1; i <= tot; i++)
	{
		sx = s.get_root(e[i].u);
		sy = s.get_root(e[i].v);
		if (sx != sy)
		{
			ans += e[i].w;
			s.merge(e[i].u,e[i].v); 
		}
	}
} 
int main()
{
	
	scanf("%d",&n); 
	for (i = 1; i <= n; i++)
	{
		for (j = i; j <= n; j++)
		{
			scanf("%lld",&c);
			e[++tot] = (info){i-1,j,c};	
		}	
	}	
	s.init(n);
	sort(e+1,e+tot+1,cmp);
	kruskal();
	printf("%lld\n",ans);
		
	return 0;	
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值