【题目链接】
【算法】
sum[i]表示前i个杯子中,杯子底下藏有球的杯子总数
那么,知道[i,j]这段区间中,藏有球的杯子总数的奇偶性,相当于知道sum[j] - sum[i-1]的奇偶性
我们发现,知道哪些杯子底下藏有球,就是需要我们知道所有sum[i]的奇偶性
因此,我们只需将所有的(i-1,j)连边,边权为输入数据中给出的费用c(i,j),然后,求出这个图的最小
生成树,即可
【代码】
笔者这题求最小生成树使用的是kruskal算法,不过,事实上prim算法可以达到更优的复杂度,kruskal的
时间复杂度是O(n^2log(n)),而prim的时间复杂度是O(n^2)
#include<bits/stdc++.h>
using namespace std;
#define MAXN 2010
struct info
{
int u,v;
long long w;
} e[MAXN*MAXN];
int n,i,j,tot;
long long ans,c;
bool cmp(info a,info b)
{
return a.w < b.w;
}
class DisjointSet
{
private :
int fa[MAXN];
public :
inline void init(int n)
{
int i;
for (i = 1; i <= n; i++) fa[i] = i;
}
inline int get_root(int x)
{
if (fa[x] == x) return x;
return fa[x] = get_root(fa[x]);
}
inline void merge(int u,int v)
{
fa[get_root(u)] = get_root(v);
}
} s;
inline void kruskal()
{
int i,sx,sy;
for (i = 1; i <= tot; i++)
{
sx = s.get_root(e[i].u);
sy = s.get_root(e[i].v);
if (sx != sy)
{
ans += e[i].w;
s.merge(e[i].u,e[i].v);
}
}
}
int main()
{
scanf("%d",&n);
for (i = 1; i <= n; i++)
{
for (j = i; j <= n; j++)
{
scanf("%lld",&c);
e[++tot] = (info){i-1,j,c};
}
}
s.init(n);
sort(e+1,e+tot+1,cmp);
kruskal();
printf("%lld\n",ans);
return 0;
}